Normalized defining polynomial
\( x^{40} + 4 x^{38} + 14 x^{36} + 48 x^{34} + 164 x^{32} + 560 x^{30} + 1912 x^{28} + 6528 x^{26} + 22288 x^{24} + 76096 x^{22} + 259808 x^{20} + 152192 x^{18} + 89152 x^{16} + 52224 x^{14} + 30592 x^{12} + 17920 x^{10} + 10496 x^{8} + 6144 x^{6} + 3584 x^{4} + 2048 x^{2} + 1024 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{16} a^{19}$, $\frac{1}{32} a^{20}$, $\frac{1}{32} a^{21}$, $\frac{1}{259808} a^{22} - \frac{3363}{8119}$, $\frac{1}{259808} a^{23} - \frac{3363}{8119} a$, $\frac{1}{519616} a^{24} + \frac{2378}{8119} a^{2}$, $\frac{1}{519616} a^{25} + \frac{2378}{8119} a^{3}$, $\frac{1}{519616} a^{26} - \frac{3363}{16238} a^{4}$, $\frac{1}{519616} a^{27} - \frac{3363}{16238} a^{5}$, $\frac{1}{1039232} a^{28} + \frac{1189}{8119} a^{6}$, $\frac{1}{1039232} a^{29} + \frac{1189}{8119} a^{7}$, $\frac{1}{1039232} a^{30} - \frac{3363}{32476} a^{8}$, $\frac{1}{1039232} a^{31} - \frac{3363}{32476} a^{9}$, $\frac{1}{2078464} a^{32} + \frac{1189}{16238} a^{10}$, $\frac{1}{2078464} a^{33} + \frac{1189}{16238} a^{11}$, $\frac{1}{2078464} a^{34} - \frac{3363}{64952} a^{12}$, $\frac{1}{2078464} a^{35} - \frac{3363}{64952} a^{13}$, $\frac{1}{4156928} a^{36} + \frac{1189}{32476} a^{14}$, $\frac{1}{4156928} a^{37} + \frac{1189}{32476} a^{15}$, $\frac{1}{4156928} a^{38} - \frac{3363}{129904} a^{16}$, $\frac{1}{4156928} a^{39} - \frac{3363}{129904} a^{17}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{51}{519616} a^{38} - \frac{9369319}{129904} a^{16} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | $20^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | $20^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | $20^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{8}$ | $20^{2}$ | $20^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||