Normalized defining polynomial
\( x^{40} - 101 x^{35} + 11225 x^{30} - 1237149 x^{25} + 136446449 x^{20} + 1266840576 x^{15} + 11770265600 x^{10} + 108447924224 x^{5} + 1099511627776 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{29} a^{20} - \frac{7}{29} a^{15} - \frac{9}{29} a^{10} + \frac{5}{29} a^{5} - \frac{6}{29}$, $\frac{1}{116} a^{21} + \frac{51}{116} a^{16} + \frac{49}{116} a^{11} - \frac{53}{116} a^{6} - \frac{35}{116} a$, $\frac{1}{464} a^{22} - \frac{181}{464} a^{17} - \frac{183}{464} a^{12} + \frac{179}{464} a^{7} + \frac{81}{464} a^{2}$, $\frac{1}{1856} a^{23} + \frac{283}{1856} a^{18} + \frac{281}{1856} a^{13} - \frac{285}{1856} a^{8} - \frac{847}{1856} a^{3}$, $\frac{1}{7424} a^{24} - \frac{3429}{7424} a^{19} - \frac{1575}{7424} a^{14} + \frac{3427}{7424} a^{9} + \frac{1009}{7424} a^{4}$, $\frac{1}{4051913749504} a^{25} - \frac{437}{29696} a^{20} + \frac{6249}{29696} a^{15} - \frac{9581}{29696} a^{10} + \frac{2049}{29696} a^{5} - \frac{1909013137}{3956947021}$, $\frac{1}{16207654998016} a^{26} - \frac{437}{118784} a^{21} - \frac{53143}{118784} a^{16} + \frac{49811}{118784} a^{11} - \frac{57343}{118784} a^{6} + \frac{6004880905}{15827788084} a$, $\frac{1}{64830619992064} a^{27} - \frac{437}{475136} a^{22} - \frac{53143}{475136} a^{17} + \frac{168595}{475136} a^{12} - \frac{176127}{475136} a^{7} + \frac{6004880905}{63311152336} a^{2}$, $\frac{1}{259322479968256} a^{28} - \frac{437}{1900544} a^{23} - \frac{528279}{1900544} a^{18} - \frac{306541}{1900544} a^{13} - \frac{651263}{1900544} a^{8} + \frac{6004880905}{253244609344} a^{3}$, $\frac{1}{1037289919873024} a^{29} - \frac{437}{7602176} a^{24} + \frac{1372265}{7602176} a^{19} - \frac{2207085}{7602176} a^{14} + \frac{1249281}{7602176} a^{9} - \frac{500484337783}{1012978437376} a^{4}$, $\frac{1}{4149159679492096} a^{30} - \frac{101}{4149159679492096} a^{25} + \frac{221289}{30408704} a^{20} + \frac{6562451}{30408704} a^{15} - \frac{10485759}{30408704} a^{10} + \frac{1676655202461}{4051913749504} a^{5} + \frac{409350572}{3956947021}$, $\frac{1}{16596638717968384} a^{31} - \frac{101}{16596638717968384} a^{26} + \frac{221289}{121634816} a^{21} + \frac{6562451}{121634816} a^{16} + \frac{50331649}{121634816} a^{11} + \frac{1676655202461}{16207654998016} a^{6} + \frac{4366297593}{15827788084} a$, $\frac{1}{66386554871873536} a^{32} - \frac{101}{66386554871873536} a^{27} + \frac{221289}{486539264} a^{22} - \frac{236707181}{486539264} a^{17} - \frac{192937983}{486539264} a^{12} - \frac{14530999795555}{64830619992064} a^{7} - \frac{27289278575}{63311152336} a^{2}$, $\frac{1}{265546219487494144} a^{33} - \frac{101}{265546219487494144} a^{28} + \frac{221289}{1946157056} a^{23} + \frac{736371347}{1946157056} a^{18} - \frac{192937983}{1946157056} a^{13} - \frac{14530999795555}{259322479968256} a^{8} + \frac{36021873761}{253244609344} a^{3}$, $\frac{1}{1062184877949976576} a^{34} - \frac{101}{1062184877949976576} a^{29} + \frac{221289}{7784628224} a^{24} - \frac{1209785709}{7784628224} a^{19} - \frac{2139095039}{7784628224} a^{14} + \frac{244791480172701}{1037289919873024} a^{9} - \frac{217222735583}{1012978437376} a^{4}$, $\frac{1}{4248739511799906304} a^{35} - \frac{101}{4248739511799906304} a^{30} + \frac{11225}{4248739511799906304} a^{25} - \frac{10187153}{1073741824} a^{20} + \frac{259179061}{1073741824} a^{15} + \frac{1287670246596765}{4149159679492096} a^{10} - \frac{698605807655}{4051913749504} a^{5} + \frac{818678795}{3956947021}$, $\frac{1}{16994958047199625216} a^{36} - \frac{101}{16994958047199625216} a^{31} + \frac{11225}{16994958047199625216} a^{26} - \frac{10187153}{4294967296} a^{21} + \frac{1332920885}{4294967296} a^{16} - \frac{2861489432895331}{16596638717968384} a^{11} + \frac{3353307941849}{16207654998016} a^{6} - \frac{7095215247}{15827788084} a$, $\frac{1}{67979832188798500864} a^{37} - \frac{101}{67979832188798500864} a^{32} + \frac{11225}{67979832188798500864} a^{27} - \frac{10187153}{17179869184} a^{22} + \frac{1332920885}{17179869184} a^{17} - \frac{2861489432895331}{66386554871873536} a^{12} - \frac{12854347056167}{64830619992064} a^{7} - \frac{7095215247}{63311152336} a^{2}$, $\frac{1}{271919328755194003456} a^{38} - \frac{101}{271919328755194003456} a^{33} + \frac{11225}{271919328755194003456} a^{28} - \frac{10187153}{68719476736} a^{23} - \frac{15846948299}{68719476736} a^{18} - \frac{69248044304768867}{265546219487494144} a^{13} + \frac{51976272935897}{259322479968256} a^{8} - \frac{70406367583}{253244609344} a^{3}$, $\frac{1}{1087677315020776013824} a^{39} - \frac{101}{1087677315020776013824} a^{34} + \frac{11225}{1087677315020776013824} a^{29} - \frac{10187153}{274877906944} a^{24} + \frac{121592005173}{274877906944} a^{19} + \frac{196298175182725277}{1062184877949976576} a^{14} + \frac{311298752904153}{1037289919873024} a^{9} - \frac{70406367583}{1012978437376} a^{4}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{63311152336} a^{27} - \frac{25963647845}{63311152336} a^{2} \) (order $50$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20^{2}$ | $20^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{4}$ | $20^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||