Normalized defining polynomial
\( x^{40} + 6 x^{38} + 32 x^{36} + 168 x^{34} + 880 x^{32} + 4608 x^{30} + 24128 x^{28} + 126336 x^{26} + 661504 x^{24} + 3463680 x^{22} + 18136064 x^{20} + 13854720 x^{18} + 10584064 x^{16} + 8085504 x^{14} + 6176768 x^{12} + 4718592 x^{10} + 3604480 x^{8} + 2752512 x^{6} + 2097152 x^{4} + 1572864 x^{2} + 1048576 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{36272128} a^{22} + \frac{6765}{17711}$, $\frac{1}{36272128} a^{23} + \frac{6765}{17711} a$, $\frac{1}{72544256} a^{24} + \frac{6765}{35422} a^{2}$, $\frac{1}{72544256} a^{25} + \frac{6765}{35422} a^{3}$, $\frac{1}{145088512} a^{26} + \frac{6765}{70844} a^{4}$, $\frac{1}{145088512} a^{27} + \frac{6765}{70844} a^{5}$, $\frac{1}{290177024} a^{28} + \frac{6765}{141688} a^{6}$, $\frac{1}{290177024} a^{29} + \frac{6765}{141688} a^{7}$, $\frac{1}{580354048} a^{30} + \frac{6765}{283376} a^{8}$, $\frac{1}{580354048} a^{31} + \frac{6765}{283376} a^{9}$, $\frac{1}{1160708096} a^{32} + \frac{6765}{566752} a^{10}$, $\frac{1}{1160708096} a^{33} + \frac{6765}{566752} a^{11}$, $\frac{1}{2321416192} a^{34} + \frac{6765}{1133504} a^{12}$, $\frac{1}{2321416192} a^{35} + \frac{6765}{1133504} a^{13}$, $\frac{1}{4642832384} a^{36} + \frac{6765}{2267008} a^{14}$, $\frac{1}{4642832384} a^{37} + \frac{6765}{2267008} a^{15}$, $\frac{1}{9285664768} a^{38} + \frac{6765}{4534016} a^{16}$, $\frac{1}{9285664768} a^{39} + \frac{6765}{4534016} a^{17}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{9}{145088512} a^{34} - \frac{5702887}{1133504} a^{12} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||