Normalized defining polynomial
\( x^{40} + 20 x^{38} + 230 x^{36} + 1800 x^{34} + 10625 x^{32} + 49005 x^{30} + 181750 x^{28} + 546975 x^{26} + 1346750 x^{24} + 2703375 x^{22} + 4412520 x^{20} + 5771300 x^{18} + 5985150 x^{16} + 4782125 x^{14} + 2915250 x^{12} + 1285650 x^{10} + 409750 x^{8} + 82625 x^{6} + 11250 x^{4} + 625 x^{2} + 25 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{5} a^{20}$, $\frac{1}{5} a^{21}$, $\frac{1}{5} a^{22}$, $\frac{1}{5} a^{23}$, $\frac{1}{5} a^{24}$, $\frac{1}{5} a^{25}$, $\frac{1}{5} a^{26}$, $\frac{1}{5} a^{27}$, $\frac{1}{5} a^{28}$, $\frac{1}{5} a^{29}$, $\frac{1}{5} a^{30}$, $\frac{1}{5} a^{31}$, $\frac{1}{5} a^{32}$, $\frac{1}{5} a^{33}$, $\frac{1}{5} a^{34}$, $\frac{1}{5} a^{35}$, $\frac{1}{159215} a^{36} + \frac{8053}{159215} a^{34} + \frac{2127}{159215} a^{32} + \frac{7682}{159215} a^{30} + \frac{2753}{159215} a^{28} + \frac{4261}{159215} a^{26} + \frac{2812}{159215} a^{24} - \frac{1039}{159215} a^{22} + \frac{2399}{31843} a^{20} - \frac{5561}{31843} a^{18} - \frac{1878}{31843} a^{16} - \frac{474}{31843} a^{14} + \frac{3072}{31843} a^{12} + \frac{3375}{31843} a^{10} - \frac{8693}{31843} a^{8} + \frac{1671}{31843} a^{6} + \frac{10754}{31843} a^{4} + \frac{695}{31843} a^{2} - \frac{15756}{31843}$, $\frac{1}{159215} a^{37} + \frac{8053}{159215} a^{35} + \frac{2127}{159215} a^{33} + \frac{7682}{159215} a^{31} + \frac{2753}{159215} a^{29} + \frac{4261}{159215} a^{27} + \frac{2812}{159215} a^{25} - \frac{1039}{159215} a^{23} + \frac{2399}{31843} a^{21} - \frac{5561}{31843} a^{19} - \frac{1878}{31843} a^{17} - \frac{474}{31843} a^{15} + \frac{3072}{31843} a^{13} + \frac{3375}{31843} a^{11} - \frac{8693}{31843} a^{9} + \frac{1671}{31843} a^{7} + \frac{10754}{31843} a^{5} + \frac{695}{31843} a^{3} - \frac{15756}{31843} a$, $\frac{1}{10876794422132693343948145156820465} a^{38} + \frac{14355522572032803866175124596}{10876794422132693343948145156820465} a^{36} + \frac{485846662657128933365659544638007}{10876794422132693343948145156820465} a^{34} - \frac{300875521503833909750788197173597}{10876794422132693343948145156820465} a^{32} + \frac{865345983103069741592158676659313}{10876794422132693343948145156820465} a^{30} - \frac{884478005145794918317061643038661}{10876794422132693343948145156820465} a^{28} + \frac{1058154049078152100580338820567644}{10876794422132693343948145156820465} a^{26} - \frac{153881528056580792036365666764644}{1553827774590384763421163593831495} a^{24} - \frac{131686810222769340819645764031292}{10876794422132693343948145156820465} a^{22} + \frac{66254246094453883806450084787442}{1553827774590384763421163593831495} a^{20} + \frac{486026532708855576287110615432147}{2175358884426538668789629031364093} a^{18} + \frac{79002672534628199647942534400362}{2175358884426538668789629031364093} a^{16} + \frac{285273036151113713803538402910557}{2175358884426538668789629031364093} a^{14} - \frac{496331422646368633908738106239974}{2175358884426538668789629031364093} a^{12} + \frac{875248195021723048288807824797370}{2175358884426538668789629031364093} a^{10} + \frac{113211757827163550668905558206330}{310765554918076952684232718766299} a^{8} - \frac{540475433033592763116404868399206}{2175358884426538668789629031364093} a^{6} + \frac{426690240287441484021000649092671}{2175358884426538668789629031364093} a^{4} - \frac{857867852469423921386809185858628}{2175358884426538668789629031364093} a^{2} - \frac{637916619361443036488681813770952}{2175358884426538668789629031364093}$, $\frac{1}{10876794422132693343948145156820465} a^{39} + \frac{14355522572032803866175124596}{10876794422132693343948145156820465} a^{37} + \frac{485846662657128933365659544638007}{10876794422132693343948145156820465} a^{35} - \frac{300875521503833909750788197173597}{10876794422132693343948145156820465} a^{33} + \frac{865345983103069741592158676659313}{10876794422132693343948145156820465} a^{31} - \frac{884478005145794918317061643038661}{10876794422132693343948145156820465} a^{29} + \frac{1058154049078152100580338820567644}{10876794422132693343948145156820465} a^{27} - \frac{153881528056580792036365666764644}{1553827774590384763421163593831495} a^{25} - \frac{131686810222769340819645764031292}{10876794422132693343948145156820465} a^{23} + \frac{66254246094453883806450084787442}{1553827774590384763421163593831495} a^{21} + \frac{486026532708855576287110615432147}{2175358884426538668789629031364093} a^{19} + \frac{79002672534628199647942534400362}{2175358884426538668789629031364093} a^{17} + \frac{285273036151113713803538402910557}{2175358884426538668789629031364093} a^{15} - \frac{496331422646368633908738106239974}{2175358884426538668789629031364093} a^{13} + \frac{875248195021723048288807824797370}{2175358884426538668789629031364093} a^{11} + \frac{113211757827163550668905558206330}{310765554918076952684232718766299} a^{9} - \frac{540475433033592763116404868399206}{2175358884426538668789629031364093} a^{7} + \frac{426690240287441484021000649092671}{2175358884426538668789629031364093} a^{5} - \frac{857867852469423921386809185858628}{2175358884426538668789629031364093} a^{3} - \frac{637916619361443036488681813770952}{2175358884426538668789629031364093} a$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{34771395730757978124566515565983}{10876794422132693343948145156820465} a^{38} + \frac{692283897168111053725510776099378}{10876794422132693343948145156820465} a^{36} + \frac{1587052547053860559766113339320657}{2175358884426538668789629031364093} a^{34} + \frac{12375918588351769666644002884613743}{2175358884426538668789629031364093} a^{32} + \frac{363948310199062342368789764166523708}{10876794422132693343948145156820465} a^{30} + \frac{334362934312097178180994489480061962}{2175358884426538668789629031364093} a^{28} + \frac{1234580133632388750749612083207465799}{2175358884426538668789629031364093} a^{26} + \frac{3696145712529795454860576250672591245}{2175358884426538668789629031364093} a^{24} + \frac{9045892737790323647042167510486708285}{2175358884426538668789629031364093} a^{22} + \frac{90123004371087405788337777342915478407}{10876794422132693343948145156820465} a^{20} + \frac{29158312147958218840435273548763128420}{2175358884426538668789629031364093} a^{18} + \frac{37698071349679749583427711324594752322}{2175358884426538668789629031364093} a^{16} + \frac{38528234138397276629821371218314527235}{2175358884426538668789629031364093} a^{14} + \frac{30166374776853215627973237685016843565}{2175358884426538668789629031364093} a^{12} + \frac{17933471660986256714922124117907747132}{2175358884426538668789629031364093} a^{10} + \frac{7607606223328870595462112891904849700}{2175358884426538668789629031364093} a^{8} + \frac{2324457873859495166602237549634081505}{2175358884426538668789629031364093} a^{6} + \frac{427937480517537119948273759350450550}{2175358884426538668789629031364093} a^{4} + \frac{59899867790215038918631270886861075}{2175358884426538668789629031364093} a^{2} + \frac{471995768929960333928148596728894}{310765554918076952684232718766299} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{4}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{8}$ | $20^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||