Properties

Label 40.0.324...000.2
Degree $40$
Signature $[0, 20]$
Discriminant $3.247\times 10^{70}$
Root discriminant \(57.91\)
Ramified primes $2,3,5$
Class number not computed
Class group not computed
Galois group $C_2\times C_{20}$ (as 40T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^40 + 20*x^38 + 230*x^36 + 1800*x^34 + 10625*x^32 + 49005*x^30 + 181750*x^28 + 546975*x^26 + 1346750*x^24 + 2703375*x^22 + 4412520*x^20 + 5771300*x^18 + 5985150*x^16 + 4782125*x^14 + 2915250*x^12 + 1285650*x^10 + 409750*x^8 + 82625*x^6 + 11250*x^4 + 625*x^2 + 25)
 
gp: K = bnfinit(y^40 + 20*y^38 + 230*y^36 + 1800*y^34 + 10625*y^32 + 49005*y^30 + 181750*y^28 + 546975*y^26 + 1346750*y^24 + 2703375*y^22 + 4412520*y^20 + 5771300*y^18 + 5985150*y^16 + 4782125*y^14 + 2915250*y^12 + 1285650*y^10 + 409750*y^8 + 82625*y^6 + 11250*y^4 + 625*y^2 + 25, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^40 + 20*x^38 + 230*x^36 + 1800*x^34 + 10625*x^32 + 49005*x^30 + 181750*x^28 + 546975*x^26 + 1346750*x^24 + 2703375*x^22 + 4412520*x^20 + 5771300*x^18 + 5985150*x^16 + 4782125*x^14 + 2915250*x^12 + 1285650*x^10 + 409750*x^8 + 82625*x^6 + 11250*x^4 + 625*x^2 + 25);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^40 + 20*x^38 + 230*x^36 + 1800*x^34 + 10625*x^32 + 49005*x^30 + 181750*x^28 + 546975*x^26 + 1346750*x^24 + 2703375*x^22 + 4412520*x^20 + 5771300*x^18 + 5985150*x^16 + 4782125*x^14 + 2915250*x^12 + 1285650*x^10 + 409750*x^8 + 82625*x^6 + 11250*x^4 + 625*x^2 + 25)
 

\( x^{40} + 20 x^{38} + 230 x^{36} + 1800 x^{34} + 10625 x^{32} + 49005 x^{30} + 181750 x^{28} + 546975 x^{26} + \cdots + 25 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $40$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 20]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(32473210254684090614318847656250000000000000000000000000000000000000000\) \(\medspace = 2^{40}\cdot 3^{20}\cdot 5^{70}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(57.91\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}5^{7/4}\approx 57.91460926441345$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $40$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(300=2^{2}\cdot 3\cdot 5^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{300}(1,·)$, $\chi_{300}(7,·)$, $\chi_{300}(269,·)$, $\chi_{300}(143,·)$, $\chi_{300}(149,·)$, $\chi_{300}(23,·)$, $\chi_{300}(281,·)$, $\chi_{300}(283,·)$, $\chi_{300}(29,·)$, $\chi_{300}(287,·)$, $\chi_{300}(161,·)$, $\chi_{300}(163,·)$, $\chi_{300}(167,·)$, $\chi_{300}(41,·)$, $\chi_{300}(43,·)$, $\chi_{300}(47,·)$, $\chi_{300}(49,·)$, $\chi_{300}(181,·)$, $\chi_{300}(187,·)$, $\chi_{300}(61,·)$, $\chi_{300}(67,·)$, $\chi_{300}(289,·)$, $\chi_{300}(203,·)$, $\chi_{300}(209,·)$, $\chi_{300}(83,·)$, $\chi_{300}(89,·)$, $\chi_{300}(221,·)$, $\chi_{300}(223,·)$, $\chi_{300}(263,·)$, $\chi_{300}(227,·)$, $\chi_{300}(101,·)$, $\chi_{300}(103,·)$, $\chi_{300}(107,·)$, $\chi_{300}(109,·)$, $\chi_{300}(229,·)$, $\chi_{300}(241,·)$, $\chi_{300}(169,·)$, $\chi_{300}(121,·)$, $\chi_{300}(127,·)$, $\chi_{300}(247,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{524288}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{5}a^{20}$, $\frac{1}{5}a^{21}$, $\frac{1}{5}a^{22}$, $\frac{1}{5}a^{23}$, $\frac{1}{5}a^{24}$, $\frac{1}{5}a^{25}$, $\frac{1}{5}a^{26}$, $\frac{1}{5}a^{27}$, $\frac{1}{5}a^{28}$, $\frac{1}{5}a^{29}$, $\frac{1}{5}a^{30}$, $\frac{1}{5}a^{31}$, $\frac{1}{5}a^{32}$, $\frac{1}{5}a^{33}$, $\frac{1}{5}a^{34}$, $\frac{1}{5}a^{35}$, $\frac{1}{159215}a^{36}+\frac{8053}{159215}a^{34}+\frac{2127}{159215}a^{32}+\frac{7682}{159215}a^{30}+\frac{2753}{159215}a^{28}+\frac{4261}{159215}a^{26}+\frac{2812}{159215}a^{24}-\frac{1039}{159215}a^{22}+\frac{2399}{31843}a^{20}-\frac{5561}{31843}a^{18}-\frac{1878}{31843}a^{16}-\frac{474}{31843}a^{14}+\frac{3072}{31843}a^{12}+\frac{3375}{31843}a^{10}-\frac{8693}{31843}a^{8}+\frac{1671}{31843}a^{6}+\frac{10754}{31843}a^{4}+\frac{695}{31843}a^{2}-\frac{15756}{31843}$, $\frac{1}{159215}a^{37}+\frac{8053}{159215}a^{35}+\frac{2127}{159215}a^{33}+\frac{7682}{159215}a^{31}+\frac{2753}{159215}a^{29}+\frac{4261}{159215}a^{27}+\frac{2812}{159215}a^{25}-\frac{1039}{159215}a^{23}+\frac{2399}{31843}a^{21}-\frac{5561}{31843}a^{19}-\frac{1878}{31843}a^{17}-\frac{474}{31843}a^{15}+\frac{3072}{31843}a^{13}+\frac{3375}{31843}a^{11}-\frac{8693}{31843}a^{9}+\frac{1671}{31843}a^{7}+\frac{10754}{31843}a^{5}+\frac{695}{31843}a^{3}-\frac{15756}{31843}a$, $\frac{1}{10\!\cdots\!65}a^{38}+\frac{14\!\cdots\!96}{10\!\cdots\!65}a^{36}+\frac{48\!\cdots\!07}{10\!\cdots\!65}a^{34}-\frac{30\!\cdots\!97}{10\!\cdots\!65}a^{32}+\frac{86\!\cdots\!13}{10\!\cdots\!65}a^{30}-\frac{88\!\cdots\!61}{10\!\cdots\!65}a^{28}+\frac{10\!\cdots\!44}{10\!\cdots\!65}a^{26}-\frac{15\!\cdots\!44}{15\!\cdots\!95}a^{24}-\frac{13\!\cdots\!92}{10\!\cdots\!65}a^{22}+\frac{66\!\cdots\!42}{15\!\cdots\!95}a^{20}+\frac{48\!\cdots\!47}{21\!\cdots\!93}a^{18}+\frac{79\!\cdots\!62}{21\!\cdots\!93}a^{16}+\frac{28\!\cdots\!57}{21\!\cdots\!93}a^{14}-\frac{49\!\cdots\!74}{21\!\cdots\!93}a^{12}+\frac{87\!\cdots\!70}{21\!\cdots\!93}a^{10}+\frac{11\!\cdots\!30}{31\!\cdots\!99}a^{8}-\frac{54\!\cdots\!06}{21\!\cdots\!93}a^{6}+\frac{42\!\cdots\!71}{21\!\cdots\!93}a^{4}-\frac{85\!\cdots\!28}{21\!\cdots\!93}a^{2}-\frac{63\!\cdots\!52}{21\!\cdots\!93}$, $\frac{1}{10\!\cdots\!65}a^{39}+\frac{14\!\cdots\!96}{10\!\cdots\!65}a^{37}+\frac{48\!\cdots\!07}{10\!\cdots\!65}a^{35}-\frac{30\!\cdots\!97}{10\!\cdots\!65}a^{33}+\frac{86\!\cdots\!13}{10\!\cdots\!65}a^{31}-\frac{88\!\cdots\!61}{10\!\cdots\!65}a^{29}+\frac{10\!\cdots\!44}{10\!\cdots\!65}a^{27}-\frac{15\!\cdots\!44}{15\!\cdots\!95}a^{25}-\frac{13\!\cdots\!92}{10\!\cdots\!65}a^{23}+\frac{66\!\cdots\!42}{15\!\cdots\!95}a^{21}+\frac{48\!\cdots\!47}{21\!\cdots\!93}a^{19}+\frac{79\!\cdots\!62}{21\!\cdots\!93}a^{17}+\frac{28\!\cdots\!57}{21\!\cdots\!93}a^{15}-\frac{49\!\cdots\!74}{21\!\cdots\!93}a^{13}+\frac{87\!\cdots\!70}{21\!\cdots\!93}a^{11}+\frac{11\!\cdots\!30}{31\!\cdots\!99}a^{9}-\frac{54\!\cdots\!06}{21\!\cdots\!93}a^{7}+\frac{42\!\cdots\!71}{21\!\cdots\!93}a^{5}-\frac{85\!\cdots\!28}{21\!\cdots\!93}a^{3}-\frac{63\!\cdots\!52}{21\!\cdots\!93}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $19$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{34771395730757978124566515565983}{10876794422132693343948145156820465} a^{38} + \frac{692283897168111053725510776099378}{10876794422132693343948145156820465} a^{36} + \frac{1587052547053860559766113339320657}{2175358884426538668789629031364093} a^{34} + \frac{12375918588351769666644002884613743}{2175358884426538668789629031364093} a^{32} + \frac{363948310199062342368789764166523708}{10876794422132693343948145156820465} a^{30} + \frac{334362934312097178180994489480061962}{2175358884426538668789629031364093} a^{28} + \frac{1234580133632388750749612083207465799}{2175358884426538668789629031364093} a^{26} + \frac{3696145712529795454860576250672591245}{2175358884426538668789629031364093} a^{24} + \frac{9045892737790323647042167510486708285}{2175358884426538668789629031364093} a^{22} + \frac{90123004371087405788337777342915478407}{10876794422132693343948145156820465} a^{20} + \frac{29158312147958218840435273548763128420}{2175358884426538668789629031364093} a^{18} + \frac{37698071349679749583427711324594752322}{2175358884426538668789629031364093} a^{16} + \frac{38528234138397276629821371218314527235}{2175358884426538668789629031364093} a^{14} + \frac{30166374776853215627973237685016843565}{2175358884426538668789629031364093} a^{12} + \frac{17933471660986256714922124117907747132}{2175358884426538668789629031364093} a^{10} + \frac{7607606223328870595462112891904849700}{2175358884426538668789629031364093} a^{8} + \frac{2324457873859495166602237549634081505}{2175358884426538668789629031364093} a^{6} + \frac{427937480517537119948273759350450550}{2175358884426538668789629031364093} a^{4} + \frac{59899867790215038918631270886861075}{2175358884426538668789629031364093} a^{2} + \frac{471995768929960333928148596728894}{310765554918076952684232718766299} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^40 + 20*x^38 + 230*x^36 + 1800*x^34 + 10625*x^32 + 49005*x^30 + 181750*x^28 + 546975*x^26 + 1346750*x^24 + 2703375*x^22 + 4412520*x^20 + 5771300*x^18 + 5985150*x^16 + 4782125*x^14 + 2915250*x^12 + 1285650*x^10 + 409750*x^8 + 82625*x^6 + 11250*x^4 + 625*x^2 + 25)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^40 + 20*x^38 + 230*x^36 + 1800*x^34 + 10625*x^32 + 49005*x^30 + 181750*x^28 + 546975*x^26 + 1346750*x^24 + 2703375*x^22 + 4412520*x^20 + 5771300*x^18 + 5985150*x^16 + 4782125*x^14 + 2915250*x^12 + 1285650*x^10 + 409750*x^8 + 82625*x^6 + 11250*x^4 + 625*x^2 + 25, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^40 + 20*x^38 + 230*x^36 + 1800*x^34 + 10625*x^32 + 49005*x^30 + 181750*x^28 + 546975*x^26 + 1346750*x^24 + 2703375*x^22 + 4412520*x^20 + 5771300*x^18 + 5985150*x^16 + 4782125*x^14 + 2915250*x^12 + 1285650*x^10 + 409750*x^8 + 82625*x^6 + 11250*x^4 + 625*x^2 + 25);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^40 + 20*x^38 + 230*x^36 + 1800*x^34 + 10625*x^32 + 49005*x^30 + 181750*x^28 + 546975*x^26 + 1346750*x^24 + 2703375*x^22 + 4412520*x^20 + 5771300*x^18 + 5985150*x^16 + 4782125*x^14 + 2915250*x^12 + 1285650*x^10 + 409750*x^8 + 82625*x^6 + 11250*x^4 + 625*x^2 + 25);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{20}$ (as 40T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 40
The 40 conjugacy class representatives for $C_2\times C_{20}$
Character table for $C_2\times C_{20}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\zeta_{20})^+\), 4.0.18000.1, 5.5.390625.1, 8.0.324000000.2, 10.0.37078857421875.1, \(\Q(\zeta_{25})^+\), 10.0.185394287109375.1, 20.0.34371041692793369293212890625.1, \(\Q(\zeta_{100})^+\), 20.0.180203247070312500000000000000000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }^{10}$ ${\href{/padicField/11.10.0.1}{10} }^{4}$ $20^{2}$ $20^{2}$ ${\href{/padicField/19.5.0.1}{5} }^{8}$ $20^{2}$ ${\href{/padicField/29.10.0.1}{10} }^{4}$ ${\href{/padicField/31.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{10}$ $20^{2}$ $20^{2}$ ${\href{/padicField/59.10.0.1}{10} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $20$$2$$10$$20$
Deg $20$$2$$10$$20$
\(3\) Copy content Toggle raw display Deg $40$$2$$20$$20$
\(5\) Copy content Toggle raw display Deg $40$$20$$2$$70$