Normalized defining polynomial
\( x^{40} - 3 x^{38} + 8 x^{36} - 21 x^{34} + 55 x^{32} - 144 x^{30} + 377 x^{28} - 987 x^{26} + 2584 x^{24} - 6765 x^{22} + 17711 x^{20} - 6765 x^{18} + 2584 x^{16} - 987 x^{14} + 377 x^{12} - 144 x^{10} + 55 x^{8} - 21 x^{6} + 8 x^{4} - 3 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{17711} a^{22} - \frac{6765}{17711}$, $\frac{1}{17711} a^{23} - \frac{6765}{17711} a$, $\frac{1}{17711} a^{24} - \frac{6765}{17711} a^{2}$, $\frac{1}{17711} a^{25} - \frac{6765}{17711} a^{3}$, $\frac{1}{17711} a^{26} - \frac{6765}{17711} a^{4}$, $\frac{1}{17711} a^{27} - \frac{6765}{17711} a^{5}$, $\frac{1}{17711} a^{28} - \frac{6765}{17711} a^{6}$, $\frac{1}{17711} a^{29} - \frac{6765}{17711} a^{7}$, $\frac{1}{17711} a^{30} - \frac{6765}{17711} a^{8}$, $\frac{1}{17711} a^{31} - \frac{6765}{17711} a^{9}$, $\frac{1}{17711} a^{32} - \frac{6765}{17711} a^{10}$, $\frac{1}{17711} a^{33} - \frac{6765}{17711} a^{11}$, $\frac{1}{17711} a^{34} - \frac{6765}{17711} a^{12}$, $\frac{1}{17711} a^{35} - \frac{6765}{17711} a^{13}$, $\frac{1}{17711} a^{36} - \frac{6765}{17711} a^{14}$, $\frac{1}{17711} a^{37} - \frac{6765}{17711} a^{15}$, $\frac{1}{17711} a^{38} - \frac{6765}{17711} a^{16}$, $\frac{1}{17711} a^{39} - \frac{6765}{17711} a^{17}$
Class group and class number
$C_{62}$, which has order $62$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1597}{17711} a^{39} + \frac{63245986}{17711} a^{17} \) (order $44$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 645826241875575.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||