Normalized defining polynomial
\( x^{40} - 101 x^{35} + 7076 x^{30} - 399051 x^{25} + 18191651 x^{20} - 1247034375 x^{15} + 69101562500 x^{10} - 3082275390625 x^{5} + 95367431640625 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{11} a^{20} - \frac{1}{11} a^{15} + \frac{1}{11} a^{10} - \frac{1}{11} a^{5} + \frac{1}{11}$, $\frac{1}{55} a^{21} - \frac{1}{55} a^{16} + \frac{1}{55} a^{11} - \frac{1}{55} a^{6} + \frac{1}{55} a$, $\frac{1}{275} a^{22} - \frac{1}{275} a^{17} + \frac{1}{275} a^{12} - \frac{1}{275} a^{7} + \frac{1}{275} a^{2}$, $\frac{1}{1375} a^{23} + \frac{274}{1375} a^{18} - \frac{549}{1375} a^{13} - \frac{551}{1375} a^{8} + \frac{276}{1375} a^{3}$, $\frac{1}{6875} a^{24} + \frac{3024}{6875} a^{19} + \frac{826}{6875} a^{14} + \frac{2199}{6875} a^{9} + \frac{1651}{6875} a^{4}$, $\frac{1}{625338003125} a^{25} - \frac{326}{34375} a^{20} + \frac{11051}{34375} a^{15} + \frac{5724}{34375} a^{10} - \frac{15624}{34375} a^{5} + \frac{90559204}{200108161}$, $\frac{1}{3126690015625} a^{26} - \frac{326}{171875} a^{21} + \frac{45426}{171875} a^{16} + \frac{40099}{171875} a^{11} - \frac{84374}{171875} a^{6} + \frac{490775526}{1000540805} a$, $\frac{1}{15633450078125} a^{27} - \frac{326}{859375} a^{22} - \frac{126449}{859375} a^{17} + \frac{40099}{859375} a^{12} + \frac{87501}{859375} a^{7} - \frac{509765279}{5002704025} a^{2}$, $\frac{1}{78167250390625} a^{28} - \frac{326}{4296875} a^{23} - \frac{1845199}{4296875} a^{18} - \frac{1678651}{4296875} a^{13} + \frac{1806251}{4296875} a^{8} + \frac{4492938746}{25013520125} a^{3}$, $\frac{1}{390836251953125} a^{29} - \frac{326}{21484375} a^{24} - \frac{10438949}{21484375} a^{19} + \frac{2618224}{21484375} a^{14} + \frac{1806251}{21484375} a^{9} + \frac{29506458871}{125067600625} a^{4}$, $\frac{1}{1954181259765625} a^{30} - \frac{101}{1954181259765625} a^{25} - \frac{4510824}{107421875} a^{20} - \frac{31669276}{107421875} a^{15} + \frac{1}{107421875} a^{10} - \frac{399051}{625338003125} a^{5} + \frac{7076}{200108161}$, $\frac{1}{9770906298828125} a^{31} - \frac{101}{9770906298828125} a^{26} - \frac{4510824}{537109375} a^{21} + \frac{183174474}{537109375} a^{16} - \frac{107421874}{537109375} a^{11} + \frac{625337604074}{3126690015625} a^{6} - \frac{40020217}{200108161} a$, $\frac{1}{48854531494140625} a^{32} - \frac{101}{48854531494140625} a^{27} - \frac{4510824}{2685546875} a^{22} + \frac{183174474}{2685546875} a^{17} + \frac{966796876}{2685546875} a^{12} - \frac{5628042427176}{15633450078125} a^{7} + \frac{72039221}{200108161} a^{2}$, $\frac{1}{244272657470703125} a^{33} - \frac{101}{244272657470703125} a^{28} - \frac{4510824}{13427734375} a^{23} - \frac{2502372401}{13427734375} a^{18} - \frac{1718749999}{13427734375} a^{13} - \frac{5628042427176}{78167250390625} a^{8} + \frac{272147382}{1000540805} a^{3}$, $\frac{1}{1221363287353515625} a^{34} - \frac{101}{1221363287353515625} a^{29} - \frac{4510824}{67138671875} a^{24} - \frac{2502372401}{67138671875} a^{19} - \frac{1718749999}{67138671875} a^{14} - \frac{161962543208426}{390836251953125} a^{9} - \frac{728393423}{5002704025} a^{4}$, $\frac{1}{6106816436767578125} a^{35} - \frac{101}{6106816436767578125} a^{30} + \frac{7076}{6106816436767578125} a^{25} + \frac{2858955724}{335693359375} a^{20} + \frac{30517578126}{335693359375} a^{15} - \frac{177652842195926}{1954181259765625} a^{10} + \frac{56848916451}{625338003125} a^{5} - \frac{18191752}{200108161}$, $\frac{1}{30534082183837890625} a^{36} - \frac{101}{30534082183837890625} a^{31} + \frac{7076}{30534082183837890625} a^{26} + \frac{2858955724}{1678466796875} a^{21} - \frac{305175781249}{1678466796875} a^{16} + \frac{1776528417569699}{9770906298828125} a^{11} - \frac{568489086674}{3126690015625} a^{6} + \frac{181916409}{1000540805} a$, $\frac{1}{152670410919189453125} a^{37} - \frac{101}{152670410919189453125} a^{32} + \frac{7076}{152670410919189453125} a^{27} + \frac{2858955724}{8392333984375} a^{22} - \frac{305175781249}{8392333984375} a^{17} + \frac{1776528417569699}{48854531494140625} a^{12} - \frac{568489086674}{15633450078125} a^{7} + \frac{181916409}{5002704025} a^{2}$, $\frac{1}{763352054595947265625} a^{38} - \frac{101}{763352054595947265625} a^{33} + \frac{7076}{763352054595947265625} a^{28} + \frac{2858955724}{41961669921875} a^{23} + \frac{8087158203126}{41961669921875} a^{18} - \frac{47078003076570926}{244272657470703125} a^{13} + \frac{15064960991451}{78167250390625} a^{8} - \frac{4820787616}{25013520125} a^{3}$, $\frac{1}{3816760272979736328125} a^{39} - \frac{101}{3816760272979736328125} a^{34} + \frac{7076}{3816760272979736328125} a^{29} + \frac{2858955724}{209808349609375} a^{24} - \frac{75836181640624}{209808349609375} a^{19} - \frac{47078003076570926}{1221363287353515625} a^{14} + \frac{171399461772701}{390836251953125} a^{9} + \frac{20192732509}{125067600625} a^{4}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{559}{1221363287353515625} a^{39} - \frac{15815100054316}{1221363287353515625} a^{14} \) (order $50$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20^{2}$ | $20^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{8}$ | $20^{2}$ | $20^{2}$ | R | $20^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||