Normalized defining polynomial
\( x^{40} + 11 x^{38} + 77 x^{36} + 440 x^{34} + 2244 x^{32} + 9273 x^{30} + 33033 x^{28} + 104786 x^{26} + 294635 x^{24} + 688611 x^{22} + 1416910 x^{20} + 2574154 x^{18} + 3942422 x^{16} + 4573316 x^{14} + 4694437 x^{12} + 4152720 x^{10} + 2752508 x^{8} + 863819 x^{6} + 263538 x^{4} + 73205 x^{2} + 14641 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{11} a^{16}$, $\frac{1}{11} a^{17}$, $\frac{1}{121} a^{18} - \frac{1}{11} a^{8}$, $\frac{1}{121} a^{19} - \frac{1}{11} a^{9}$, $\frac{1}{121} a^{20}$, $\frac{1}{121} a^{21}$, $\frac{1}{121} a^{22}$, $\frac{1}{121} a^{23}$, $\frac{1}{121} a^{24}$, $\frac{1}{121} a^{25}$, $\frac{1}{1331} a^{26} - \frac{2}{121} a^{16} + \frac{1}{11} a^{6}$, $\frac{1}{1331} a^{27} - \frac{2}{121} a^{17} + \frac{1}{11} a^{7}$, $\frac{1}{1331} a^{28} - \frac{1}{11} a^{8}$, $\frac{1}{1331} a^{29} - \frac{1}{11} a^{9}$, $\frac{1}{1331} a^{30}$, $\frac{1}{1331} a^{31}$, $\frac{1}{1331} a^{32}$, $\frac{1}{1331} a^{33}$, $\frac{1}{774464896196321} a^{34} - \frac{3190709248}{70405899654211} a^{32} - \frac{1618603772}{70405899654211} a^{30} + \frac{16792576465}{70405899654211} a^{28} + \frac{10252294982}{70405899654211} a^{26} - \frac{17977069773}{70405899654211} a^{24} + \frac{2237044627}{6400536332201} a^{22} + \frac{14502562927}{6400536332201} a^{20} + \frac{598530065}{581866939291} a^{18} + \frac{288566388494}{6400536332201} a^{16} - \frac{286816002206}{6400536332201} a^{14} - \frac{18532336046}{581866939291} a^{12} + \frac{3055556333}{581866939291} a^{10} - \frac{161664475384}{581866939291} a^{8} + \frac{128503633979}{581866939291} a^{6} + \frac{127185291727}{581866939291} a^{4} - \frac{11798061945}{52896994481} a^{2} + \frac{7493800533}{52896994481}$, $\frac{1}{774464896196321} a^{35} - \frac{3190709248}{70405899654211} a^{33} - \frac{1618603772}{70405899654211} a^{31} + \frac{16792576465}{70405899654211} a^{29} + \frac{10252294982}{70405899654211} a^{27} - \frac{17977069773}{70405899654211} a^{25} + \frac{2237044627}{6400536332201} a^{23} + \frac{14502562927}{6400536332201} a^{21} + \frac{598530065}{581866939291} a^{19} + \frac{288566388494}{6400536332201} a^{17} - \frac{286816002206}{6400536332201} a^{15} - \frac{18532336046}{581866939291} a^{13} + \frac{3055556333}{581866939291} a^{11} - \frac{161664475384}{581866939291} a^{9} + \frac{128503633979}{581866939291} a^{7} + \frac{127185291727}{581866939291} a^{5} - \frac{11798061945}{52896994481} a^{3} + \frac{7493800533}{52896994481} a$, $\frac{1}{774464896196321} a^{36} + \frac{16008996310}{70405899654211} a^{32} - \frac{4958158505}{70405899654211} a^{30} - \frac{18377658466}{70405899654211} a^{28} + \frac{7464166299}{70405899654211} a^{26} - \frac{9174883319}{6400536332201} a^{24} + \frac{18298437958}{6400536332201} a^{22} + \frac{15603799148}{6400536332201} a^{20} - \frac{1848375322}{581866939291} a^{18} - \frac{68172970267}{6400536332201} a^{16} - \frac{10106953870}{581866939291} a^{14} - \frac{2098182813}{52896994481} a^{12} + \frac{13017979267}{581866939291} a^{10} - \frac{198233377945}{581866939291} a^{8} - \frac{185892891824}{581866939291} a^{6} + \frac{14568552221}{52896994481} a^{4} + \frac{20239880052}{52896994481} a^{2} + \frac{23106908469}{52896994481}$, $\frac{1}{774464896196321} a^{37} + \frac{16008996310}{70405899654211} a^{33} - \frac{4958158505}{70405899654211} a^{31} - \frac{18377658466}{70405899654211} a^{29} + \frac{7464166299}{70405899654211} a^{27} - \frac{9174883319}{6400536332201} a^{25} + \frac{18298437958}{6400536332201} a^{23} + \frac{15603799148}{6400536332201} a^{21} - \frac{1848375322}{581866939291} a^{19} - \frac{68172970267}{6400536332201} a^{17} - \frac{10106953870}{581866939291} a^{15} - \frac{2098182813}{52896994481} a^{13} + \frac{13017979267}{581866939291} a^{11} - \frac{198233377945}{581866939291} a^{9} - \frac{185892891824}{581866939291} a^{7} + \frac{14568552221}{52896994481} a^{5} + \frac{20239880052}{52896994481} a^{3} + \frac{23106908469}{52896994481} a$, $\frac{1}{774464896196321} a^{38} - \frac{13287510312}{70405899654211} a^{32} - \frac{4106145961}{70405899654211} a^{30} - \frac{14089504255}{70405899654211} a^{28} + \frac{13731987822}{70405899654211} a^{26} + \frac{9374904263}{6400536332201} a^{24} - \frac{25218143065}{6400536332201} a^{22} + \frac{5056542771}{6400536332201} a^{20} - \frac{1384939810}{581866939291} a^{18} - \frac{168663881843}{6400536332201} a^{16} - \frac{21165014350}{581866939291} a^{14} + \frac{22839883305}{581866939291} a^{12} + \frac{3463587132}{581866939291} a^{10} - \frac{239027494430}{581866939291} a^{8} - \frac{83208508182}{581866939291} a^{6} + \frac{2968650789}{52896994481} a^{4} - \frac{11182737850}{52896994481} a^{2} - \frac{21109201013}{52896994481}$, $\frac{1}{774464896196321} a^{39} - \frac{13287510312}{70405899654211} a^{33} - \frac{4106145961}{70405899654211} a^{31} - \frac{14089504255}{70405899654211} a^{29} + \frac{13731987822}{70405899654211} a^{27} + \frac{9374904263}{6400536332201} a^{25} - \frac{25218143065}{6400536332201} a^{23} + \frac{5056542771}{6400536332201} a^{21} - \frac{1384939810}{581866939291} a^{19} - \frac{168663881843}{6400536332201} a^{17} - \frac{21165014350}{581866939291} a^{15} + \frac{22839883305}{581866939291} a^{13} + \frac{3463587132}{581866939291} a^{11} - \frac{239027494430}{581866939291} a^{9} - \frac{83208508182}{581866939291} a^{7} + \frac{2968650789}{52896994481} a^{5} - \frac{11182737850}{52896994481} a^{3} - \frac{21109201013}{52896994481} a$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1555976772}{774464896196321} a^{38} - \frac{14392785141}{774464896196321} a^{36} - \frac{91802629548}{774464896196321} a^{34} - \frac{4098794166}{6400536332201} a^{32} - \frac{221726690010}{70405899654211} a^{30} - \frac{831280590441}{70405899654211} a^{28} - \frac{2758357822563}{70405899654211} a^{26} - \frac{8205443507142}{70405899654211} a^{24} - \frac{175640306498}{581866939291} a^{22} - \frac{3802807230768}{6400536332201} a^{20} - \frac{7123261662216}{6400536332201} a^{18} - \frac{11337624749178}{6400536332201} a^{16} - \frac{13330441999917}{6400536332201} a^{14} - \frac{623510550556}{581866939291} a^{12} - \frac{1140530973876}{581866939291} a^{10} - \frac{781489333737}{581866939291} a^{8} - \frac{245455335783}{581866939291} a^{6} - \frac{75075879249}{581866939291} a^{4} - \frac{168705162564}{52896994481} a^{2} - \frac{388994193}{52896994481} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20^{2}$ | R | $20^{2}$ | R | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |