Properties

Label 40.0.28437879249...8336.1
Degree $40$
Signature $[0, 20]$
Discriminant $2^{60}\cdot 7^{20}\cdot 11^{36}$
Root discriminant $64.77$
Ramified primes $2, 7, 11$
Class number Not computed
Class group Not computed
Galois group $C_2^2\times C_{10}$ (as 40T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1024, -4096, 11776, -29696, 69376, -153600, 326016, -667392, 1321408, -2531584, 4684384, -9750400, 19792752, -38712800, 73192024, -133478048, 233364508, -386642440, 593311510, -799980544, 799980567, -110, -103334297, 13347388, 11624611, -3227338, -1081637, 551264, 77343, -94754, 20527, -8690, -1529, 1320, 27, -174, 19, 20, -5, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^40 - 2*x^39 - 5*x^38 + 20*x^37 + 19*x^36 - 174*x^35 + 27*x^34 + 1320*x^33 - 1529*x^32 - 8690*x^31 + 20527*x^30 - 94754*x^29 + 77343*x^28 + 551264*x^27 - 1081637*x^26 - 3227338*x^25 + 11624611*x^24 + 13347388*x^23 - 103334297*x^22 - 110*x^21 + 799980567*x^20 - 799980544*x^19 + 593311510*x^18 - 386642440*x^17 + 233364508*x^16 - 133478048*x^15 + 73192024*x^14 - 38712800*x^13 + 19792752*x^12 - 9750400*x^11 + 4684384*x^10 - 2531584*x^9 + 1321408*x^8 - 667392*x^7 + 326016*x^6 - 153600*x^5 + 69376*x^4 - 29696*x^3 + 11776*x^2 - 4096*x + 1024)
 
gp: K = bnfinit(x^40 - 2*x^39 - 5*x^38 + 20*x^37 + 19*x^36 - 174*x^35 + 27*x^34 + 1320*x^33 - 1529*x^32 - 8690*x^31 + 20527*x^30 - 94754*x^29 + 77343*x^28 + 551264*x^27 - 1081637*x^26 - 3227338*x^25 + 11624611*x^24 + 13347388*x^23 - 103334297*x^22 - 110*x^21 + 799980567*x^20 - 799980544*x^19 + 593311510*x^18 - 386642440*x^17 + 233364508*x^16 - 133478048*x^15 + 73192024*x^14 - 38712800*x^13 + 19792752*x^12 - 9750400*x^11 + 4684384*x^10 - 2531584*x^9 + 1321408*x^8 - 667392*x^7 + 326016*x^6 - 153600*x^5 + 69376*x^4 - 29696*x^3 + 11776*x^2 - 4096*x + 1024, 1)
 

Normalized defining polynomial

\( x^{40} - 2 x^{39} - 5 x^{38} + 20 x^{37} + 19 x^{36} - 174 x^{35} + 27 x^{34} + 1320 x^{33} - 1529 x^{32} - 8690 x^{31} + 20527 x^{30} - 94754 x^{29} + 77343 x^{28} + 551264 x^{27} - 1081637 x^{26} - 3227338 x^{25} + 11624611 x^{24} + 13347388 x^{23} - 103334297 x^{22} - 110 x^{21} + 799980567 x^{20} - 799980544 x^{19} + 593311510 x^{18} - 386642440 x^{17} + 233364508 x^{16} - 133478048 x^{15} + 73192024 x^{14} - 38712800 x^{13} + 19792752 x^{12} - 9750400 x^{11} + 4684384 x^{10} - 2531584 x^{9} + 1321408 x^{8} - 667392 x^{7} + 326016 x^{6} - 153600 x^{5} + 69376 x^{4} - 29696 x^{3} + 11776 x^{2} - 4096 x + 1024 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $40$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 20]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2843787924946259292606529888567891936342075788742277722133996384693518336=2^{60}\cdot 7^{20}\cdot 11^{36}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $64.77$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(616=2^{3}\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{616}(1,·)$, $\chi_{616}(321,·)$, $\chi_{616}(393,·)$, $\chi_{616}(139,·)$, $\chi_{616}(435,·)$, $\chi_{616}(195,·)$, $\chi_{616}(153,·)$, $\chi_{616}(281,·)$, $\chi_{616}(27,·)$, $\chi_{616}(545,·)$, $\chi_{616}(155,·)$, $\chi_{616}(41,·)$, $\chi_{616}(43,·)$, $\chi_{616}(433,·)$, $\chi_{616}(307,·)$, $\chi_{616}(265,·)$, $\chi_{616}(57,·)$, $\chi_{616}(475,·)$, $\chi_{616}(449,·)$, $\chi_{616}(83,·)$, $\chi_{616}(323,·)$, $\chi_{616}(211,·)$, $\chi_{616}(97,·)$, $\chi_{616}(587,·)$, $\chi_{616}(337,·)$, $\chi_{616}(419,·)$, $\chi_{616}(377,·)$, $\chi_{616}(267,·)$, $\chi_{616}(601,·)$, $\chi_{616}(603,·)$, $\chi_{616}(225,·)$, $\chi_{616}(251,·)$, $\chi_{616}(489,·)$, $\chi_{616}(491,·)$, $\chi_{616}(113,·)$, $\chi_{616}(531,·)$, $\chi_{616}(547,·)$, $\chi_{616}(169,·)$, $\chi_{616}(505,·)$, $\chi_{616}(379,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{20} - \frac{1}{2} a^{18} - \frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{21} - \frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{24} - \frac{1}{4} a^{22} - \frac{1}{2} a^{21} - \frac{1}{4} a^{20} - \frac{1}{4} a^{18} - \frac{1}{2} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{25} - \frac{1}{4} a^{23} - \frac{1}{4} a^{21} - \frac{1}{2} a^{20} - \frac{1}{4} a^{19} - \frac{1}{4} a^{17} - \frac{1}{2} a^{16} - \frac{1}{4} a^{15} - \frac{1}{2} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{26} - \frac{1}{8} a^{24} - \frac{1}{4} a^{23} - \frac{1}{8} a^{22} - \frac{1}{2} a^{21} + \frac{3}{8} a^{20} + \frac{1}{4} a^{19} + \frac{3}{8} a^{18} - \frac{1}{8} a^{16} - \frac{1}{8} a^{14} + \frac{1}{4} a^{13} - \frac{1}{8} a^{12} + \frac{3}{8} a^{10} - \frac{1}{4} a^{9} + \frac{3}{8} a^{8} - \frac{1}{2} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{27} - \frac{1}{8} a^{25} - \frac{1}{8} a^{23} - \frac{1}{4} a^{22} - \frac{1}{8} a^{21} - \frac{1}{2} a^{20} + \frac{3}{8} a^{19} + \frac{1}{4} a^{18} + \frac{3}{8} a^{17} + \frac{1}{4} a^{16} - \frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{8} a^{11} + \frac{3}{8} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{28} - \frac{1}{16} a^{26} - \frac{1}{8} a^{25} - \frac{1}{16} a^{24} - \frac{1}{4} a^{23} + \frac{3}{16} a^{22} - \frac{3}{8} a^{21} + \frac{3}{16} a^{20} - \frac{1}{16} a^{18} - \frac{1}{2} a^{17} + \frac{7}{16} a^{16} + \frac{1}{8} a^{15} + \frac{7}{16} a^{14} + \frac{3}{16} a^{12} - \frac{1}{8} a^{11} - \frac{5}{16} a^{10} + \frac{1}{4} a^{9} - \frac{1}{16} a^{8} - \frac{3}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{16} a^{29} - \frac{1}{16} a^{27} - \frac{1}{16} a^{25} - \frac{1}{8} a^{24} - \frac{1}{16} a^{23} - \frac{1}{4} a^{22} + \frac{3}{16} a^{21} - \frac{3}{8} a^{20} + \frac{3}{16} a^{19} + \frac{1}{8} a^{18} - \frac{1}{16} a^{17} + \frac{1}{4} a^{16} + \frac{7}{16} a^{15} + \frac{1}{8} a^{14} + \frac{7}{16} a^{13} + \frac{3}{16} a^{11} - \frac{1}{8} a^{10} - \frac{5}{16} a^{9} + \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{32} a^{30} - \frac{1}{32} a^{28} - \frac{1}{16} a^{27} - \frac{1}{32} a^{26} - \frac{1}{8} a^{25} + \frac{3}{32} a^{24} - \frac{3}{16} a^{23} + \frac{3}{32} a^{22} + \frac{15}{32} a^{20} - \frac{1}{4} a^{19} + \frac{7}{32} a^{18} - \frac{7}{16} a^{17} + \frac{7}{32} a^{16} - \frac{1}{2} a^{15} + \frac{3}{32} a^{14} + \frac{7}{16} a^{13} - \frac{5}{32} a^{12} - \frac{3}{8} a^{11} + \frac{15}{32} a^{10} - \frac{3}{16} a^{9} - \frac{7}{16} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{42877910431962817696} a^{31} - \frac{720825118771957}{42877910431962817696} a^{30} + \frac{521503637096943001}{42877910431962817696} a^{29} - \frac{1036519848124938397}{42877910431962817696} a^{28} - \frac{2614726436672434561}{42877910431962817696} a^{27} - \frac{331933548059389823}{42877910431962817696} a^{26} - \frac{712876286995801403}{42877910431962817696} a^{25} - \frac{4754427127816648777}{42877910431962817696} a^{24} + \frac{2370706880434089039}{42877910431962817696} a^{23} + \frac{1537397349604034089}{42877910431962817696} a^{22} + \frac{15050012973409923493}{42877910431962817696} a^{21} - \frac{3641911294578639839}{42877910431962817696} a^{20} - \frac{3599138132798243995}{42877910431962817696} a^{19} - \frac{12452065277138543837}{42877910431962817696} a^{18} + \frac{13453727727307737659}{42877910431962817696} a^{17} - \frac{7395671604713802235}{42877910431962817696} a^{16} - \frac{20916363069618604623}{42877910431962817696} a^{15} + \frac{4229124101495206915}{42877910431962817696} a^{14} + \frac{19096339862839290707}{42877910431962817696} a^{13} + \frac{20111630263315362413}{42877910431962817696} a^{12} + \frac{10298966194905301217}{42877910431962817696} a^{11} - \frac{19808288409651062069}{42877910431962817696} a^{10} + \frac{6493753234832283867}{21438955215981408848} a^{9} - \frac{5180468174318178597}{21438955215981408848} a^{8} + \frac{1708427268585563495}{10719477607990704424} a^{7} + \frac{3824383512757072263}{10719477607990704424} a^{6} + \frac{480746156911729741}{2679869401997676106} a^{5} - \frac{149323876314165482}{1339934700998838053} a^{4} + \frac{496979092733129489}{2679869401997676106} a^{3} + \frac{312741015006139412}{1339934700998838053} a^{2} - \frac{138141042211510330}{1339934700998838053} a - \frac{207851565939906881}{1339934700998838053}$, $\frac{1}{85755820863925635392} a^{32} + \frac{379173330483735103}{85755820863925635392} a^{30} + \frac{574434549726838561}{42877910431962817696} a^{29} - \frac{350559369265617961}{85755820863925635392} a^{28} - \frac{122038262026939661}{5359738803995352212} a^{27} - \frac{2889040748344256381}{85755820863925635392} a^{26} + \frac{1209686383902002271}{42877910431962817696} a^{25} - \frac{5393272954493006821}{85755820863925635392} a^{24} + \frac{4007435342591523241}{21438955215981408848} a^{23} + \frac{2903073203961351887}{85755820863925635392} a^{22} + \frac{5935232952390267283}{21438955215981408848} a^{21} - \frac{5802103471757542513}{85755820863925635392} a^{20} + \frac{8916751389348926371}{42877910431962817696} a^{19} - \frac{38101478161620243521}{85755820863925635392} a^{18} + \frac{2777923485453588505}{21438955215981408848} a^{17} + \frac{39553413773015884803}{85755820863925635392} a^{16} + \frac{2138462924639825753}{42877910431962817696} a^{15} + \frac{8676023020688747907}{85755820863925635392} a^{14} + \frac{4285503445872253891}{10719477607990704424} a^{13} - \frac{2707034068646868897}{85755820863925635392} a^{12} - \frac{19040466186937643529}{42877910431962817696} a^{11} - \frac{5853784419421675387}{42877910431962817696} a^{10} - \frac{2007941927012477349}{21438955215981408848} a^{9} + \frac{4309734759436748303}{10719477607990704424} a^{8} + \frac{2622939562789656671}{5359738803995352212} a^{7} - \frac{2076188146429121985}{5359738803995352212} a^{6} - \frac{1520712971019050255}{5359738803995352212} a^{5} + \frac{448401700535387229}{1339934700998838053} a^{4} + \frac{681904332879723103}{2679869401997676106} a^{3} + \frac{31967728053872365}{1339934700998838053} a^{2} - \frac{599623268844719186}{1339934700998838053} a - \frac{33014345387403677}{1339934700998838053}$, $\frac{1}{85755820863925635392} a^{33} - \frac{1}{85755820863925635392} a^{31} - \frac{83700867242504131}{5359738803995352212} a^{30} - \frac{521503637096943001}{85755820863925635392} a^{29} + \frac{1188227274561888225}{42877910431962817696} a^{28} - \frac{65142965325241545}{85755820863925635392} a^{27} - \frac{230491909683570271}{5359738803995352212} a^{26} - \frac{10006601320994903021}{85755820863925635392} a^{25} + \frac{3047180914407743415}{42877910431962817696} a^{24} - \frac{21129792694417821781}{85755820863925635392} a^{23} - \frac{2021679551020894725}{42877910431962817696} a^{22} + \frac{11748681046566837567}{85755820863925635392} a^{21} - \frac{4067040704048748449}{10719477607990704424} a^{20} + \frac{30397832152775005055}{85755820863925635392} a^{19} + \frac{20295346999057071475}{42877910431962817696} a^{18} + \frac{32104052106652756143}{85755820863925635392} a^{17} - \frac{7195641330563706299}{21438955215981408848} a^{16} + \frac{4837146657632547987}{85755820863925635392} a^{15} - \frac{1444594700248184431}{42877910431962817696} a^{14} + \frac{42540656383107259731}{85755820863925635392} a^{13} - \frac{5026331347287241651}{10719477607990704424} a^{12} - \frac{11929018382975990487}{42877910431962817696} a^{11} + \frac{2534503349331921743}{42877910431962817696} a^{10} - \frac{2576909266916722907}{21438955215981408848} a^{9} + \frac{580332035660832219}{21438955215981408848} a^{8} + \frac{288922104301368833}{2679869401997676106} a^{7} + \frac{24427573779930237}{2679869401997676106} a^{6} - \frac{910340428955283897}{2679869401997676106} a^{5} + \frac{74661938157082741}{1339934700998838053} a^{4} - \frac{918456896865983771}{2679869401997676106} a^{3} + \frac{1027193685992698641}{2679869401997676106} a^{2} + \frac{69070521105755165}{1339934700998838053} a + \frac{268705283399308621}{1339934700998838053}$, $\frac{1}{171511641727851270784} a^{34} - \frac{1}{171511641727851270784} a^{32} - \frac{1}{85755820863925635392} a^{31} - \frac{377731680246191189}{171511641727851270784} a^{30} - \frac{547969093411890781}{42877910431962817696} a^{29} - \frac{2936139738479857457}{171511641727851270784} a^{28} + \frac{3591032532887951849}{85755820863925635392} a^{27} + \frac{8912646648458388239}{171511641727851270784} a^{26} - \frac{732068612612694135}{10719477607990704424} a^{25} + \frac{20261866014121656587}{171511641727851270784} a^{24} + \frac{226408878556895763}{1339934700998838053} a^{23} + \frac{20820826116807340995}{171511641727851270784} a^{22} - \frac{21560740074195105847}{85755820863925635392} a^{21} - \frac{2993290351071234445}{171511641727851270784} a^{20} - \frac{1002318179033836675}{5359738803995352212} a^{19} - \frac{60268383775995769681}{171511641727851270784} a^{18} - \frac{8290097090224210245}{85755820863925635392} a^{17} - \frac{62280242191555745817}{171511641727851270784} a^{16} - \frac{20089613349485047731}{42877910431962817696} a^{15} + \frac{31103378012279008171}{171511641727851270784} a^{14} + \frac{38797989609606624697}{85755820863925635392} a^{13} + \frac{41459086535426634807}{85755820863925635392} a^{12} - \frac{9874037310981456899}{21438955215981408848} a^{11} - \frac{1908245296450849855}{42877910431962817696} a^{10} - \frac{7602644457905255471}{21438955215981408848} a^{9} - \frac{3204636062886796095}{10719477607990704424} a^{8} - \frac{350898230822877424}{1339934700998838053} a^{7} - \frac{505970960448833173}{10719477607990704424} a^{6} + \frac{14172801180555439}{79996101552169436} a^{5} + \frac{520428438388808153}{1339934700998838053} a^{4} + \frac{750492988192411757}{2679869401997676106} a^{3} - \frac{344708743060011777}{2679869401997676106} a^{2} + \frac{116288230493082835}{1339934700998838053} a + \frac{120432955663655279}{1339934700998838053}$, $\frac{1}{171511641727851270784} a^{35} - \frac{1}{171511641727851270784} a^{33} - \frac{1}{171511641727851270784} a^{31} + \frac{670327763058805005}{85755820863925635392} a^{30} - \frac{521503637096943001}{171511641727851270784} a^{29} - \frac{37926856609237457}{21438955215981408848} a^{28} - \frac{5424881769320593757}{171511641727851270784} a^{27} - \frac{3183869978467400221}{85755820863925635392} a^{26} - \frac{20726078928985607445}{171511641727851270784} a^{25} + \frac{10503775594681313079}{85755820863925635392} a^{24} - \frac{37209009106403878417}{171511641727851270784} a^{23} + \frac{2070437326675364659}{10719477607990704424} a^{22} - \frac{74007139817358797825}{171511641727851270784} a^{21} + \frac{25269812914768985847}{85755820863925635392} a^{20} - \frac{76796943927132039185}{171511641727851270784} a^{19} - \frac{17320987870947644349}{42877910431962817696} a^{18} + \frac{80341701342610926051}{171511641727851270784} a^{17} - \frac{26450694970116955075}{85755820863925635392} a^{16} + \frac{47715057089595365683}{171511641727851270784} a^{15} + \frac{1500885288670608661}{5359738803995352212} a^{14} + \frac{1091445896041909457}{85755820863925635392} a^{13} - \frac{5366043678161748021}{85755820863925635392} a^{12} - \frac{17944059719948388107}{42877910431962817696} a^{11} + \frac{597284324166541845}{42877910431962817696} a^{10} - \frac{3298356684956618533}{21438955215981408848} a^{9} - \frac{1219918029957608661}{2679869401997676106} a^{8} - \frac{762090492396100387}{10719477607990704424} a^{7} - \frac{3970948955436653685}{10719477607990704424} a^{6} + \frac{1769528973042392209}{5359738803995352212} a^{5} - \frac{1190610824684672571}{5359738803995352212} a^{4} + \frac{210738902066427141}{2679869401997676106} a^{3} - \frac{330779178786566776}{1339934700998838053} a^{2} - \frac{635432089946541444}{1339934700998838053} a - \frac{30426858729700870}{1339934700998838053}$, $\frac{1}{343023283455702541568} a^{36} - \frac{1}{343023283455702541568} a^{34} - \frac{1}{171511641727851270784} a^{33} - \frac{1}{343023283455702541568} a^{32} - \frac{1}{85755820863925635392} a^{31} - \frac{3056159432006323381}{343023283455702541568} a^{30} - \frac{1617441823920724563}{171511641727851270784} a^{29} - \frac{8902708248223008981}{343023283455702541568} a^{28} - \frac{899198505053499265}{21438955215981408848} a^{27} + \frac{12256383146574843991}{343023283455702541568} a^{26} - \frac{3106589911154850149}{42877910431962817696} a^{25} + \frac{292156847780516975}{343023283455702541568} a^{24} + \frac{18645227202641509313}{171511641727851270784} a^{23} - \frac{46918649529464795217}{343023283455702541568} a^{22} - \frac{6586246182448885747}{21438955215981408848} a^{21} + \frac{114165177719990765579}{343023283455702541568} a^{20} - \frac{60675601967701312713}{171511641727851270784} a^{19} - \frac{54123339035702414749}{343023283455702541568} a^{18} + \frac{17266716312209625161}{85755820863925635392} a^{17} - \frac{109125895228074691785}{343023283455702541568} a^{16} + \frac{7535830390625270221}{171511641727851270784} a^{15} - \frac{42354684915838374563}{171511641727851270784} a^{14} - \frac{9143901923795966059}{42877910431962817696} a^{13} + \frac{157556602595083856}{1339934700998838053} a^{12} - \frac{3604687505235366119}{10719477607990704424} a^{11} - \frac{19785891488542034851}{42877910431962817696} a^{10} - \frac{3214855781704913621}{10719477607990704424} a^{9} + \frac{8474974913433743465}{21438955215981408848} a^{8} - \frac{412874357344386015}{5359738803995352212} a^{7} - \frac{2446950893080244649}{5359738803995352212} a^{6} + \frac{1574350462091580389}{5359738803995352212} a^{5} + \frac{297545188272945447}{1339934700998838053} a^{4} - \frac{168287939685908965}{1339934700998838053} a^{3} + \frac{170621235733171716}{1339934700998838053} a^{2} + \frac{345273300834450923}{1339934700998838053} a - \frac{640177731397292257}{1339934700998838053}$, $\frac{1}{343023283455702541568} a^{37} - \frac{1}{343023283455702541568} a^{35} - \frac{1}{343023283455702541568} a^{33} - \frac{1}{171511641727851270784} a^{32} - \frac{1}{343023283455702541568} a^{31} + \frac{145577216287534951}{85755820863925635392} a^{30} - \frac{2819241836004297245}{343023283455702541568} a^{29} + \frac{198851942828668133}{171511641727851270784} a^{28} + \frac{19919297831522884243}{343023283455702541568} a^{27} - \frac{7577516260836792759}{171511641727851270784} a^{26} + \frac{38752041183350610015}{343023283455702541568} a^{25} + \frac{9871472501305456657}{85755820863925635392} a^{24} - \frac{47829536631154655497}{343023283455702541568} a^{23} - \frac{39936962630511956735}{171511641727851270784} a^{22} - \frac{57172137788536709545}{343023283455702541568} a^{21} - \frac{67907277340349057}{10719477607990704424} a^{20} + \frac{80486647459304934963}{343023283455702541568} a^{19} - \frac{50137885620228567297}{171511641727851270784} a^{18} - \frac{732484516730221287}{5119750499338843904} a^{17} + \frac{4516117256401045545}{85755820863925635392} a^{16} - \frac{72954753453930943935}{171511641727851270784} a^{15} + \frac{26057619206031695093}{171511641727851270784} a^{14} + \frac{6262460862041335679}{85755820863925635392} a^{13} + \frac{18094333411605012961}{42877910431962817696} a^{12} - \frac{2131666168503048395}{42877910431962817696} a^{11} + \frac{2952701886895892361}{21438955215981408848} a^{10} + \frac{6054466126022119673}{21438955215981408848} a^{9} + \frac{11883501732792714}{1339934700998838053} a^{8} + \frac{1685786644508226321}{10719477607990704424} a^{7} + \frac{760681019210214169}{10719477607990704424} a^{6} - \frac{517374214983477437}{2679869401997676106} a^{5} - \frac{666816003495648404}{1339934700998838053} a^{4} + \frac{552175992796095036}{1339934700998838053} a^{3} + \frac{142440943229624705}{2679869401997676106} a^{2} - \frac{17904410550911129}{1339934700998838053} a - \frac{668673607170567623}{1339934700998838053}$, $\frac{1}{686046566911405083136} a^{38} - \frac{1}{686046566911405083136} a^{36} - \frac{1}{343023283455702541568} a^{35} - \frac{1}{686046566911405083136} a^{34} - \frac{1}{171511641727851270784} a^{33} + \frac{3}{686046566911405083136} a^{32} - \frac{3}{343023283455702541568} a^{31} - \frac{9577632665826867373}{686046566911405083136} a^{30} - \frac{660042804381313609}{21438955215981408848} a^{29} - \frac{192297823042575713}{686046566911405083136} a^{28} - \frac{3271725904333400381}{85755820863925635392} a^{27} - \frac{1315782152681077993}{686046566911405083136} a^{26} - \frac{3028841368578996695}{343023283455702541568} a^{25} - \frac{81796500465617633001}{686046566911405083136} a^{24} + \frac{1686962604621227103}{42877910431962817696} a^{23} + \frac{170300846643871438931}{686046566911405083136} a^{22} - \frac{68495768049837041113}{343023283455702541568} a^{21} - \frac{268901521651563751317}{686046566911405083136} a^{20} - \frac{66981986580704879843}{171511641727851270784} a^{19} - \frac{34232304018034115329}{686046566911405083136} a^{18} - \frac{77291030309155204067}{343023283455702541568} a^{17} - \frac{104813649745702405071}{343023283455702541568} a^{16} - \frac{34966333843260861285}{85755820863925635392} a^{15} - \frac{37751524301448012315}{85755820863925635392} a^{14} + \frac{10530516028303526293}{21438955215981408848} a^{13} + \frac{9212211761311634811}{42877910431962817696} a^{12} + \frac{5116860159059527163}{42877910431962817696} a^{11} + \frac{4406833745143817999}{10719477607990704424} a^{10} - \frac{199258480355736591}{1339934700998838053} a^{9} - \frac{2362156058171585847}{21438955215981408848} a^{8} - \frac{760408396624937335}{5359738803995352212} a^{7} + \frac{861027338265915815}{10719477607990704424} a^{6} + \frac{667222839630171582}{1339934700998838053} a^{5} - \frac{1226624193611383033}{2679869401997676106} a^{4} - \frac{809307098176639973}{2679869401997676106} a^{3} + \frac{376997635070541151}{2679869401997676106} a^{2} + \frac{225076321521014173}{1339934700998838053} a - \frac{351809467757198402}{1339934700998838053}$, $\frac{1}{686046566911405083136} a^{39} - \frac{1}{686046566911405083136} a^{37} - \frac{1}{686046566911405083136} a^{35} - \frac{1}{343023283455702541568} a^{34} - \frac{1}{686046566911405083136} a^{33} - \frac{1}{171511641727851270784} a^{32} + \frac{3}{686046566911405083136} a^{31} - \frac{89460548146209115}{343023283455702541568} a^{30} + \frac{18407989729457529363}{686046566911405083136} a^{29} + \frac{7272900997116817017}{343023283455702541568} a^{28} - \frac{8073338746286193697}{686046566911405083136} a^{27} - \frac{8792831283580389623}{171511641727851270784} a^{26} - \frac{54694030364166240073}{686046566911405083136} a^{25} + \frac{31706580113456679217}{343023283455702541568} a^{24} + \frac{65919332352611154647}{686046566911405083136} a^{23} + \frac{599746428396363559}{10719477607990704424} a^{22} + \frac{84179781781869299251}{686046566911405083136} a^{21} - \frac{7927974358840674289}{343023283455702541568} a^{20} - \frac{291161238869004879221}{686046566911405083136} a^{19} - \frac{53308571232412495103}{171511641727851270784} a^{18} + \frac{91672770996722412545}{343023283455702541568} a^{17} - \frac{93550171705599568091}{343023283455702541568} a^{16} + \frac{11564198212243664079}{171511641727851270784} a^{15} + \frac{10479765200079854413}{85755820863925635392} a^{14} - \frac{25370169951278631755}{85755820863925635392} a^{13} - \frac{6000585214887787209}{42877910431962817696} a^{12} - \frac{15169930204772196859}{42877910431962817696} a^{11} - \frac{372667783410986805}{1339934700998838053} a^{10} + \frac{112676256310947188}{1339934700998838053} a^{9} - \frac{63126917667975656}{1339934700998838053} a^{8} - \frac{3726290069741128947}{10719477607990704424} a^{7} - \frac{1577706258903385201}{5359738803995352212} a^{6} - \frac{1571741270021397569}{5359738803995352212} a^{5} - \frac{21558758192986905}{1339934700998838053} a^{4} + \frac{1175912033258865659}{2679869401997676106} a^{3} - \frac{1128327585907892177}{2679869401997676106} a^{2} + \frac{232715313900362611}{1339934700998838053} a + \frac{291921241776009414}{1339934700998838053}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{2746015108449011}{171511641727851270784} a^{39} + \frac{194283314224170073877}{85755820863925635392} a^{28} - \frac{16439035860896232516807161}{171511641727851270784} a^{17} - \frac{47534616168220501369}{10719477607990704424} a^{6} \) (order $22$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_{10}$ (as 40T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 40
The 40 conjugacy class representatives for $C_2^2\times C_{10}$
Character table for $C_2^2\times C_{10}$ is not computed

Intermediate fields

\(\Q(\sqrt{77}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-154}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{14}, \sqrt{22})\), \(\Q(\sqrt{-2}, \sqrt{77})\), \(\Q(\sqrt{-7}, \sqrt{-11})\), \(\Q(\sqrt{-2}, \sqrt{-11})\), \(\Q(\sqrt{-7}, \sqrt{22})\), \(\Q(\sqrt{-2}, \sqrt{-7})\), \(\Q(\sqrt{-11}, \sqrt{14})\), \(\Q(\zeta_{11})^+\), 8.0.143986855936.1, 10.10.39630026842637.1, 10.10.77265229938688.1, 10.10.118054247234502656.1, 10.0.7024111812608.1, 10.0.1298596719579529216.1, \(\Q(\zeta_{11})\), 10.0.3602729712967.1, 20.20.1686353440102714438260338720197574656.2, 20.0.1686353440102714438260338720197574656.6, 20.0.1570539027548129147161113769.2, 20.0.5969915757478328440239161344.5, 20.0.1686353440102714438260338720197574656.5, 20.0.13936805290105078002151559671054336.2, 20.0.1686353440102714438260338720197574656.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{4}$ R R ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
7Data not computed
$11$11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$