Properties

Label 40.0.28065023146...8496.1
Degree $40$
Signature $[0, 20]$
Discriminant $2^{120}\cdot 11^{32}$
Root discriminant $54.48$
Ramified primes $2, 11$
Class number $2605$ (GRH)
Class group $[2605]$ (GRH)
Galois group $C_2\times C_{20}$ (as 40T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 0, 0, 0, 0, 0, 0, 23219, 0, 0, 0, 0, 0, 0, 0, 105419, 0, 0, 0, 0, 0, 0, 0, 14016, 0, 0, 0, 0, 0, 0, 0, 257, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^40 + 257*x^32 + 14016*x^24 + 105419*x^16 + 23219*x^8 + 1)
 
gp: K = bnfinit(x^40 + 257*x^32 + 14016*x^24 + 105419*x^16 + 23219*x^8 + 1, 1)
 

Normalized defining polynomial

\( x^{40} + 257 x^{32} + 14016 x^{24} + 105419 x^{16} + 23219 x^{8} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $40$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 20]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2806502314667513790456400791754773417894971971642777758942872517738496=2^{120}\cdot 11^{32}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $54.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(176=2^{4}\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{176}(1,·)$, $\chi_{176}(3,·)$, $\chi_{176}(133,·)$, $\chi_{176}(135,·)$, $\chi_{176}(9,·)$, $\chi_{176}(141,·)$, $\chi_{176}(15,·)$, $\chi_{176}(147,·)$, $\chi_{176}(23,·)$, $\chi_{176}(25,·)$, $\chi_{176}(155,·)$, $\chi_{176}(157,·)$, $\chi_{176}(5,·)$, $\chi_{176}(27,·)$, $\chi_{176}(37,·)$, $\chi_{176}(31,·)$, $\chi_{176}(169,·)$, $\chi_{176}(45,·)$, $\chi_{176}(47,·)$, $\chi_{176}(49,·)$, $\chi_{176}(53,·)$, $\chi_{176}(137,·)$, $\chi_{176}(159,·)$, $\chi_{176}(67,·)$, $\chi_{176}(69,·)$, $\chi_{176}(71,·)$, $\chi_{176}(75,·)$, $\chi_{176}(81,·)$, $\chi_{176}(163,·)$, $\chi_{176}(89,·)$, $\chi_{176}(91,·)$, $\chi_{176}(93,·)$, $\chi_{176}(97,·)$, $\chi_{176}(59,·)$, $\chi_{176}(103,·)$, $\chi_{176}(111,·)$, $\chi_{176}(113,·)$, $\chi_{176}(115,·)$, $\chi_{176}(119,·)$, $\chi_{176}(125,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{22148330043533} a^{32} + \frac{2726870929642}{22148330043533} a^{24} - \frac{7580340779727}{22148330043533} a^{16} + \frac{6188800161857}{22148330043533} a^{8} + \frac{6246971138049}{22148330043533}$, $\frac{1}{22148330043533} a^{33} + \frac{2726870929642}{22148330043533} a^{25} - \frac{7580340779727}{22148330043533} a^{17} + \frac{6188800161857}{22148330043533} a^{9} + \frac{6246971138049}{22148330043533} a$, $\frac{1}{22148330043533} a^{34} + \frac{2726870929642}{22148330043533} a^{26} - \frac{7580340779727}{22148330043533} a^{18} + \frac{6188800161857}{22148330043533} a^{10} + \frac{6246971138049}{22148330043533} a^{2}$, $\frac{1}{22148330043533} a^{35} + \frac{2726870929642}{22148330043533} a^{27} - \frac{7580340779727}{22148330043533} a^{19} + \frac{6188800161857}{22148330043533} a^{11} + \frac{6246971138049}{22148330043533} a^{3}$, $\frac{1}{22148330043533} a^{36} + \frac{2726870929642}{22148330043533} a^{28} - \frac{7580340779727}{22148330043533} a^{20} + \frac{6188800161857}{22148330043533} a^{12} + \frac{6246971138049}{22148330043533} a^{4}$, $\frac{1}{22148330043533} a^{37} + \frac{2726870929642}{22148330043533} a^{29} - \frac{7580340779727}{22148330043533} a^{21} + \frac{6188800161857}{22148330043533} a^{13} + \frac{6246971138049}{22148330043533} a^{5}$, $\frac{1}{22148330043533} a^{38} + \frac{2726870929642}{22148330043533} a^{30} - \frac{7580340779727}{22148330043533} a^{22} + \frac{6188800161857}{22148330043533} a^{14} + \frac{6246971138049}{22148330043533} a^{6}$, $\frac{1}{22148330043533} a^{39} + \frac{2726870929642}{22148330043533} a^{31} - \frac{7580340779727}{22148330043533} a^{23} + \frac{6188800161857}{22148330043533} a^{15} + \frac{6246971138049}{22148330043533} a^{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2605}$, which has order $2605$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{43114401572}{22148330043533} a^{35} + \frac{11079877784514}{22148330043533} a^{27} + \frac{604158913402484}{22148330043533} a^{19} + \frac{4538168045437461}{22148330043533} a^{11} + \frac{960702298577351}{22148330043533} a^{3} \) (order $16$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4506035972876552.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{20}$ (as 40T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 40
The 40 conjugacy class representatives for $C_2\times C_{20}$
Character table for $C_2\times C_{20}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{8})\), 4.0.2048.2, \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{16})\), 10.0.219503494144.1, 10.10.7024111812608.1, 10.0.7024111812608.1, 20.0.50522262278163705147147943936.1, 20.0.1655513490330868290261743826894848.1, 20.20.1655513490330868290261743826894848.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20^{2}$ $20^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ R $20^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{8}$ $20^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ $20^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ $20^{2}$ $20^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
11Data not computed