Normalized defining polynomial
\( x^{40} + 257 x^{32} + 14016 x^{24} + 105419 x^{16} + 23219 x^{8} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{22148330043533} a^{32} + \frac{2726870929642}{22148330043533} a^{24} - \frac{7580340779727}{22148330043533} a^{16} + \frac{6188800161857}{22148330043533} a^{8} + \frac{6246971138049}{22148330043533}$, $\frac{1}{22148330043533} a^{33} + \frac{2726870929642}{22148330043533} a^{25} - \frac{7580340779727}{22148330043533} a^{17} + \frac{6188800161857}{22148330043533} a^{9} + \frac{6246971138049}{22148330043533} a$, $\frac{1}{22148330043533} a^{34} + \frac{2726870929642}{22148330043533} a^{26} - \frac{7580340779727}{22148330043533} a^{18} + \frac{6188800161857}{22148330043533} a^{10} + \frac{6246971138049}{22148330043533} a^{2}$, $\frac{1}{22148330043533} a^{35} + \frac{2726870929642}{22148330043533} a^{27} - \frac{7580340779727}{22148330043533} a^{19} + \frac{6188800161857}{22148330043533} a^{11} + \frac{6246971138049}{22148330043533} a^{3}$, $\frac{1}{22148330043533} a^{36} + \frac{2726870929642}{22148330043533} a^{28} - \frac{7580340779727}{22148330043533} a^{20} + \frac{6188800161857}{22148330043533} a^{12} + \frac{6246971138049}{22148330043533} a^{4}$, $\frac{1}{22148330043533} a^{37} + \frac{2726870929642}{22148330043533} a^{29} - \frac{7580340779727}{22148330043533} a^{21} + \frac{6188800161857}{22148330043533} a^{13} + \frac{6246971138049}{22148330043533} a^{5}$, $\frac{1}{22148330043533} a^{38} + \frac{2726870929642}{22148330043533} a^{30} - \frac{7580340779727}{22148330043533} a^{22} + \frac{6188800161857}{22148330043533} a^{14} + \frac{6246971138049}{22148330043533} a^{6}$, $\frac{1}{22148330043533} a^{39} + \frac{2726870929642}{22148330043533} a^{31} - \frac{7580340779727}{22148330043533} a^{23} + \frac{6188800161857}{22148330043533} a^{15} + \frac{6246971138049}{22148330043533} a^{7}$
Class group and class number
$C_{2605}$, which has order $2605$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{43114401572}{22148330043533} a^{35} + \frac{11079877784514}{22148330043533} a^{27} + \frac{604158913402484}{22148330043533} a^{19} + \frac{4538168045437461}{22148330043533} a^{11} + \frac{960702298577351}{22148330043533} a^{3} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4506035972876552.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | $20^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{8}$ | $20^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | $20^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | $20^{2}$ | $20^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||