Normalized defining polynomial
\( x^{40} + 3 x^{38} + 5 x^{36} + 3 x^{34} - 11 x^{32} - 45 x^{30} - 91 x^{28} - 93 x^{26} + 85 x^{24} + 627 x^{22} + 1541 x^{20} + 2508 x^{18} + 1360 x^{16} - 5952 x^{14} - 23296 x^{12} - 46080 x^{10} - 45056 x^{8} + 49152 x^{6} + 327680 x^{4} + 786432 x^{2} + 1048576 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{6164} a^{22} - \frac{1}{4} a^{20} + \frac{1}{4} a^{18} - \frac{1}{4} a^{16} + \frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{627}{1541}$, $\frac{1}{12328} a^{23} - \frac{1}{8} a^{21} + \frac{1}{8} a^{19} - \frac{1}{8} a^{17} + \frac{1}{8} a^{15} - \frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3} + \frac{627}{3082} a$, $\frac{1}{24656} a^{24} - \frac{1}{24656} a^{22} + \frac{5}{16} a^{20} + \frac{3}{16} a^{18} + \frac{5}{16} a^{16} + \frac{3}{16} a^{14} + \frac{5}{16} a^{12} + \frac{3}{16} a^{10} + \frac{5}{16} a^{8} + \frac{3}{16} a^{6} + \frac{5}{16} a^{4} - \frac{457}{3082} a^{2} - \frac{542}{1541}$, $\frac{1}{49312} a^{25} - \frac{1}{49312} a^{23} + \frac{5}{32} a^{21} + \frac{3}{32} a^{19} - \frac{11}{32} a^{17} - \frac{13}{32} a^{15} + \frac{5}{32} a^{13} + \frac{3}{32} a^{11} - \frac{11}{32} a^{9} - \frac{13}{32} a^{7} + \frac{5}{32} a^{5} - \frac{457}{6164} a^{3} - \frac{271}{1541} a$, $\frac{1}{98624} a^{26} - \frac{1}{98624} a^{24} - \frac{7}{98624} a^{22} - \frac{29}{64} a^{20} + \frac{21}{64} a^{18} - \frac{13}{64} a^{16} + \frac{5}{64} a^{14} + \frac{3}{64} a^{12} - \frac{11}{64} a^{10} + \frac{19}{64} a^{8} - \frac{27}{64} a^{6} - \frac{457}{12328} a^{4} - \frac{271}{3082} a^{2} - \frac{178}{1541}$, $\frac{1}{197248} a^{27} - \frac{1}{197248} a^{25} - \frac{7}{197248} a^{23} - \frac{29}{128} a^{21} + \frac{21}{128} a^{19} + \frac{51}{128} a^{17} - \frac{59}{128} a^{15} + \frac{3}{128} a^{13} - \frac{11}{128} a^{11} - \frac{45}{128} a^{9} + \frac{37}{128} a^{7} - \frac{457}{24656} a^{5} - \frac{271}{6164} a^{3} - \frac{89}{1541} a$, $\frac{1}{394496} a^{28} - \frac{1}{394496} a^{26} - \frac{7}{394496} a^{24} - \frac{17}{394496} a^{22} - \frac{107}{256} a^{20} + \frac{51}{256} a^{18} + \frac{69}{256} a^{16} + \frac{3}{256} a^{14} - \frac{11}{256} a^{12} - \frac{45}{256} a^{10} - \frac{91}{256} a^{8} - \frac{457}{49312} a^{6} - \frac{271}{12328} a^{4} - \frac{89}{3082} a^{2} + \frac{2}{1541}$, $\frac{1}{788992} a^{29} - \frac{1}{788992} a^{27} - \frac{7}{788992} a^{25} - \frac{17}{788992} a^{23} - \frac{107}{512} a^{21} - \frac{205}{512} a^{19} - \frac{187}{512} a^{17} - \frac{253}{512} a^{15} - \frac{11}{512} a^{13} - \frac{45}{512} a^{11} - \frac{91}{512} a^{9} - \frac{457}{98624} a^{7} - \frac{271}{24656} a^{5} - \frac{89}{6164} a^{3} + \frac{1}{1541} a$, $\frac{1}{1577984} a^{30} - \frac{1}{1577984} a^{28} - \frac{7}{1577984} a^{26} - \frac{17}{1577984} a^{24} - \frac{1}{68608} a^{22} + \frac{307}{1024} a^{20} + \frac{325}{1024} a^{18} - \frac{253}{1024} a^{16} - \frac{11}{1024} a^{14} - \frac{45}{1024} a^{12} - \frac{91}{1024} a^{10} - \frac{457}{197248} a^{8} - \frac{271}{49312} a^{6} - \frac{89}{12328} a^{4} + \frac{1}{3082} a^{2} + \frac{2}{67}$, $\frac{1}{3155968} a^{31} - \frac{1}{3155968} a^{29} - \frac{7}{3155968} a^{27} - \frac{17}{3155968} a^{25} - \frac{1}{137216} a^{23} + \frac{307}{2048} a^{21} - \frac{699}{2048} a^{19} + \frac{771}{2048} a^{17} + \frac{1013}{2048} a^{15} - \frac{45}{2048} a^{13} - \frac{91}{2048} a^{11} - \frac{457}{394496} a^{9} - \frac{271}{98624} a^{7} - \frac{89}{24656} a^{5} + \frac{1}{6164} a^{3} + \frac{1}{67} a$, $\frac{1}{6311936} a^{32} - \frac{1}{6311936} a^{30} - \frac{7}{6311936} a^{28} - \frac{17}{6311936} a^{26} - \frac{1}{274432} a^{24} - \frac{1}{6311936} a^{22} - \frac{699}{4096} a^{20} + \frac{771}{4096} a^{18} + \frac{1013}{4096} a^{16} - \frac{45}{4096} a^{14} - \frac{91}{4096} a^{12} - \frac{457}{788992} a^{10} - \frac{271}{197248} a^{8} - \frac{89}{49312} a^{6} + \frac{1}{12328} a^{4} + \frac{1}{134} a^{2} + \frac{34}{1541}$, $\frac{1}{12623872} a^{33} - \frac{1}{12623872} a^{31} - \frac{7}{12623872} a^{29} - \frac{17}{12623872} a^{27} - \frac{1}{548864} a^{25} - \frac{1}{12623872} a^{23} - \frac{699}{8192} a^{21} - \frac{3325}{8192} a^{19} + \frac{1013}{8192} a^{17} - \frac{45}{8192} a^{15} + \frac{4005}{8192} a^{13} + \frac{788535}{1577984} a^{11} + \frac{196977}{394496} a^{9} + \frac{49223}{98624} a^{7} - \frac{12327}{24656} a^{5} - \frac{133}{268} a^{3} - \frac{1507}{3082} a$, $\frac{1}{25247744} a^{34} - \frac{1}{25247744} a^{32} - \frac{7}{25247744} a^{30} - \frac{17}{25247744} a^{28} - \frac{1}{1097728} a^{26} - \frac{1}{25247744} a^{24} + \frac{89}{25247744} a^{22} - \frac{7421}{16384} a^{20} - \frac{3083}{16384} a^{18} + \frac{4051}{16384} a^{16} + \frac{8101}{16384} a^{14} - \frac{457}{3155968} a^{12} - \frac{271}{788992} a^{10} - \frac{89}{197248} a^{8} + \frac{1}{49312} a^{6} + \frac{1}{536} a^{4} + \frac{17}{3082} a^{2} + \frac{14}{1541}$, $\frac{1}{50495488} a^{35} - \frac{1}{50495488} a^{33} - \frac{7}{50495488} a^{31} - \frac{17}{50495488} a^{29} - \frac{1}{2195456} a^{27} - \frac{1}{50495488} a^{25} + \frac{89}{50495488} a^{23} - \frac{7421}{32768} a^{21} - \frac{3083}{32768} a^{19} - \frac{12333}{32768} a^{17} + \frac{8101}{32768} a^{15} - \frac{457}{6311936} a^{13} - \frac{271}{1577984} a^{11} - \frac{89}{394496} a^{9} + \frac{1}{98624} a^{7} + \frac{1}{1072} a^{5} + \frac{17}{6164} a^{3} + \frac{7}{1541} a$, $\frac{1}{100990976} a^{36} - \frac{1}{100990976} a^{34} - \frac{7}{100990976} a^{32} - \frac{17}{100990976} a^{30} - \frac{1}{4390912} a^{28} - \frac{1}{100990976} a^{26} + \frac{89}{100990976} a^{24} + \frac{271}{100990976} a^{22} + \frac{29685}{65536} a^{20} - \frac{12333}{65536} a^{18} - \frac{24667}{65536} a^{16} - \frac{457}{12623872} a^{14} - \frac{271}{3155968} a^{12} - \frac{89}{788992} a^{10} + \frac{1}{197248} a^{8} + \frac{1}{2144} a^{6} + \frac{17}{12328} a^{4} + \frac{7}{3082} a^{2} + \frac{2}{1541}$, $\frac{1}{201981952} a^{37} - \frac{1}{201981952} a^{35} - \frac{7}{201981952} a^{33} - \frac{17}{201981952} a^{31} - \frac{1}{8781824} a^{29} - \frac{1}{201981952} a^{27} + \frac{89}{201981952} a^{25} + \frac{271}{201981952} a^{23} + \frac{29685}{131072} a^{21} - \frac{12333}{131072} a^{19} - \frac{24667}{131072} a^{17} - \frac{457}{25247744} a^{15} - \frac{271}{6311936} a^{13} - \frac{89}{1577984} a^{11} + \frac{1}{394496} a^{9} + \frac{1}{4288} a^{7} + \frac{17}{24656} a^{5} + \frac{7}{6164} a^{3} + \frac{1}{1541} a$, $\frac{1}{403963904} a^{38} - \frac{1}{403963904} a^{36} - \frac{7}{403963904} a^{34} - \frac{17}{403963904} a^{32} - \frac{1}{17563648} a^{30} - \frac{1}{403963904} a^{28} + \frac{89}{403963904} a^{26} + \frac{271}{403963904} a^{24} + \frac{457}{403963904} a^{22} + \frac{118739}{262144} a^{20} - \frac{24667}{262144} a^{18} - \frac{457}{50495488} a^{16} - \frac{271}{12623872} a^{14} - \frac{89}{3155968} a^{12} + \frac{1}{788992} a^{10} + \frac{1}{8576} a^{8} + \frac{17}{49312} a^{6} + \frac{7}{12328} a^{4} + \frac{1}{3082} a^{2} - \frac{2}{1541}$, $\frac{1}{807927808} a^{39} - \frac{1}{807927808} a^{37} - \frac{7}{807927808} a^{35} - \frac{17}{807927808} a^{33} - \frac{1}{35127296} a^{31} - \frac{1}{807927808} a^{29} + \frac{89}{807927808} a^{27} + \frac{271}{807927808} a^{25} + \frac{457}{807927808} a^{23} + \frac{118739}{524288} a^{21} + \frac{237477}{524288} a^{19} - \frac{457}{100990976} a^{17} - \frac{271}{25247744} a^{15} - \frac{89}{6311936} a^{13} + \frac{1}{1577984} a^{11} + \frac{1}{17152} a^{9} + \frac{17}{98624} a^{7} + \frac{7}{24656} a^{5} + \frac{1}{6164} a^{3} - \frac{1}{1541} a$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{49312} a^{27} + \frac{8279}{49312} a^{5} \) (order $44$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{4}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||