Normalized defining polynomial
\( x^{40} - x^{39} + 7 x^{38} - 12 x^{37} + 52 x^{36} - 116 x^{35} + 409 x^{34} - 1041 x^{33} + 3327 x^{32} - 9048 x^{31} + 27560 x^{30} + 44511 x^{29} + 108474 x^{28} + 195200 x^{27} + 472595 x^{26} + 762568 x^{25} + 2159728 x^{24} + 2693075 x^{23} + 10555266 x^{22} + 7000344 x^{21} + 56864599 x^{20} - 7000344 x^{19} + 10555266 x^{18} - 2693075 x^{17} + 2159728 x^{16} - 762568 x^{15} + 472595 x^{14} - 195200 x^{13} + 108474 x^{12} - 44511 x^{11} + 27560 x^{10} + 9048 x^{9} + 3327 x^{8} + 1041 x^{7} + 409 x^{6} + 116 x^{5} + 52 x^{4} + 12 x^{3} + 7 x^{2} + x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{30887} a^{22} + \frac{14665}{30887} a^{11} - \frac{1}{30887}$, $\frac{1}{30887} a^{23} + \frac{14665}{30887} a^{12} - \frac{1}{30887} a$, $\frac{1}{30887} a^{24} + \frac{14665}{30887} a^{13} - \frac{1}{30887} a^{2}$, $\frac{1}{30887} a^{25} + \frac{14665}{30887} a^{14} - \frac{1}{30887} a^{3}$, $\frac{1}{30887} a^{26} + \frac{14665}{30887} a^{15} - \frac{1}{30887} a^{4}$, $\frac{1}{30887} a^{27} + \frac{14665}{30887} a^{16} - \frac{1}{30887} a^{5}$, $\frac{1}{30887} a^{28} + \frac{14665}{30887} a^{17} - \frac{1}{30887} a^{6}$, $\frac{1}{30887} a^{29} + \frac{14665}{30887} a^{18} - \frac{1}{30887} a^{7}$, $\frac{1}{61774} a^{30} - \frac{1}{61774} a^{27} - \frac{1}{61774} a^{24} - \frac{1}{2} a^{21} - \frac{8111}{30887} a^{19} - \frac{1}{2} a^{18} + \frac{8111}{30887} a^{16} - \frac{1}{2} a^{15} + \frac{8111}{30887} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} + \frac{15443}{30887} a^{8} - \frac{1}{2} a^{6} - \frac{15443}{30887} a^{5} - \frac{1}{2} a^{3} - \frac{15443}{30887} a^{2} - \frac{1}{2}$, $\frac{1}{2502643205086} a^{31} + \frac{1864899}{1251321602543} a^{30} + \frac{18391548}{1251321602543} a^{29} - \frac{14404307}{2502643205086} a^{28} - \frac{2122327}{1251321602543} a^{27} + \frac{15948944}{1251321602543} a^{26} - \frac{27527437}{2502643205086} a^{25} - \frac{7001458}{1251321602543} a^{24} - \frac{16996693}{1251321602543} a^{23} - \frac{28423657}{2502643205086} a^{22} + \frac{3353886}{40512889} a^{21} - \frac{459436411361}{1251321602543} a^{20} + \frac{1142261837647}{2502643205086} a^{19} - \frac{258229617514}{1251321602543} a^{18} + \frac{619344037126}{1251321602543} a^{17} - \frac{835751516989}{2502643205086} a^{16} + \frac{144736154469}{1251321602543} a^{15} + \frac{71026068932}{1251321602543} a^{14} + \frac{960899431585}{2502643205086} a^{13} - \frac{148881474595}{1251321602543} a^{12} - \frac{201973606631}{1251321602543} a^{11} - \frac{18174391}{81025778} a^{10} + \frac{358778743506}{1251321602543} a^{9} + \frac{503945083650}{1251321602543} a^{8} + \frac{979623708833}{2502643205086} a^{7} - \frac{580651209231}{1251321602543} a^{6} - \frac{89154593088}{1251321602543} a^{5} + \frac{690076806417}{2502643205086} a^{4} + \frac{552173666813}{1251321602543} a^{3} - \frac{492968297838}{1251321602543} a^{2} + \frac{972395948989}{2502643205086} a + \frac{517051796822}{1251321602543}$, $\frac{1}{2502643205086} a^{32} + \frac{1}{2502643205086} a^{30} - \frac{36783091}{2502643205086} a^{29} + \frac{18391548}{1251321602543} a^{28} - \frac{14404307}{2502643205086} a^{27} + \frac{36268235}{2502643205086} a^{26} + \frac{15948944}{1251321602543} a^{25} - \frac{27527437}{2502643205086} a^{24} + \frac{26509973}{2502643205086} a^{23} - \frac{16996693}{1251321602543} a^{22} + \frac{918872944713}{2502643205086} a^{21} - \frac{33805117}{81025778} a^{20} - \frac{459436411361}{1251321602543} a^{19} - \frac{703181282081}{2502643205086} a^{18} + \frac{734862367515}{2502643205086} a^{17} + \frac{619344037126}{1251321602543} a^{16} + \frac{1009691602739}{2502643205086} a^{15} - \frac{961849293605}{2502643205086} a^{14} + \frac{71026068932}{1251321602543} a^{13} + \frac{303699346227}{2502643205086} a^{12} + \frac{953558653353}{2502643205086} a^{11} + \frac{252558257845}{1251321602543} a^{10} - \frac{18174391}{81025778} a^{9} - \frac{533764115531}{2502643205086} a^{8} - \frac{121695461177}{1251321602543} a^{7} + \frac{979623708833}{2502643205086} a^{6} + \frac{90019184081}{2502643205086} a^{5} + \frac{536485951739}{1251321602543} a^{4} + \frac{690076806417}{2502643205086} a^{3} - \frac{146974268917}{2502643205086} a^{2} + \frac{132672246989}{1251321602543} a + \frac{972395948989}{2502643205086}$, $\frac{1}{2502643205086} a^{33} - \frac{5989964}{1251321602543} a^{22} - \frac{362086439097}{1251321602543} a^{11} + \frac{1136131357197}{2502643205086}$, $\frac{1}{2502643205086} a^{34} - \frac{5989964}{1251321602543} a^{23} - \frac{362086439097}{1251321602543} a^{12} + \frac{1136131357197}{2502643205086} a$, $\frac{1}{2502643205086} a^{35} - \frac{5989964}{1251321602543} a^{24} - \frac{362086439097}{1251321602543} a^{13} + \frac{1136131357197}{2502643205086} a^{2}$, $\frac{1}{2502643205086} a^{36} - \frac{5989964}{1251321602543} a^{25} - \frac{362086439097}{1251321602543} a^{14} + \frac{1136131357197}{2502643205086} a^{3}$, $\frac{1}{2502643205086} a^{37} - \frac{5989964}{1251321602543} a^{26} - \frac{362086439097}{1251321602543} a^{15} + \frac{1136131357197}{2502643205086} a^{4}$, $\frac{1}{2502643205086} a^{38} - \frac{5989964}{1251321602543} a^{27} - \frac{362086439097}{1251321602543} a^{16} + \frac{1136131357197}{2502643205086} a^{5}$, $\frac{1}{2502643205086} a^{39} - \frac{5989964}{1251321602543} a^{28} - \frac{362086439097}{1251321602543} a^{17} + \frac{1136131357197}{2502643205086} a^{6}$
Class group and class number
$C_{167977}$, which has order $167977$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5185766156}{1251321602543} a^{39} + \frac{632616799455720}{1251321602543} a^{28} - \frac{1732449050492489480}{1251321602543} a^{17} - \frac{739245612967895}{1251321602543} a^{6} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65411797196858550 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{4}$ | $20^{2}$ | $20^{2}$ | $20^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 17 | Data not computed | ||||||