Normalized defining polynomial
\( x^{40} + 175 x^{36} + 9273 x^{32} + 161966 x^{28} + 849466 x^{24} + 1781941 x^{20} + 1558024 x^{16} + 496503 x^{12} + 42966 x^{8} + 1085 x^{4} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{3} a^{20} - \frac{1}{3} a^{16} + \frac{1}{3} a^{12} - \frac{1}{3} a^{8} - \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{3} a^{21} - \frac{1}{3} a^{17} + \frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{22} - \frac{1}{3} a^{18} + \frac{1}{3} a^{14} - \frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{23} - \frac{1}{3} a^{19} + \frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{24} + \frac{1}{3} a^{8} + \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{3} a^{25} + \frac{1}{3} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{26} + \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{27} + \frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{28} + \frac{1}{3} a^{12} + \frac{1}{3} a^{8} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{29} + \frac{1}{3} a^{13} + \frac{1}{3} a^{9} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{30} + \frac{1}{3} a^{14} + \frac{1}{3} a^{10} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{31} + \frac{1}{3} a^{15} + \frac{1}{3} a^{11} - \frac{1}{3} a^{7}$, $\frac{1}{269679} a^{32} - \frac{2840}{89893} a^{28} - \frac{36257}{269679} a^{24} - \frac{1414}{89893} a^{20} - \frac{115250}{269679} a^{16} - \frac{130310}{269679} a^{12} - \frac{7664}{89893} a^{8} + \frac{17023}{269679} a^{4} - \frac{56974}{269679}$, $\frac{1}{269679} a^{33} - \frac{2840}{89893} a^{29} - \frac{36257}{269679} a^{25} - \frac{1414}{89893} a^{21} - \frac{115250}{269679} a^{17} - \frac{130310}{269679} a^{13} - \frac{7664}{89893} a^{9} + \frac{17023}{269679} a^{5} - \frac{56974}{269679} a$, $\frac{1}{269679} a^{34} - \frac{2840}{89893} a^{30} - \frac{36257}{269679} a^{26} - \frac{1414}{89893} a^{22} - \frac{115250}{269679} a^{18} - \frac{130310}{269679} a^{14} - \frac{7664}{89893} a^{10} + \frac{17023}{269679} a^{6} - \frac{56974}{269679} a^{2}$, $\frac{1}{269679} a^{35} - \frac{2840}{89893} a^{31} - \frac{36257}{269679} a^{27} - \frac{1414}{89893} a^{23} - \frac{115250}{269679} a^{19} - \frac{130310}{269679} a^{15} - \frac{7664}{89893} a^{11} + \frac{17023}{269679} a^{7} - \frac{56974}{269679} a^{3}$, $\frac{1}{12333107020927611587963781} a^{36} + \frac{16392002085665156992}{12333107020927611587963781} a^{32} - \frac{926062360534987103046416}{12333107020927611587963781} a^{28} + \frac{1782878011745516536923664}{12333107020927611587963781} a^{24} + \frac{1216508152595936505528220}{12333107020927611587963781} a^{20} - \frac{3925411092666018839236006}{12333107020927611587963781} a^{16} + \frac{1505777891049793142796187}{12333107020927611587963781} a^{12} + \frac{5704433496969442786325374}{12333107020927611587963781} a^{8} + \frac{869477124971120933764461}{4111035673642537195987927} a^{4} + \frac{2855180718947302234205636}{12333107020927611587963781}$, $\frac{1}{12333107020927611587963781} a^{37} + \frac{16392002085665156992}{12333107020927611587963781} a^{33} - \frac{926062360534987103046416}{12333107020927611587963781} a^{29} + \frac{1782878011745516536923664}{12333107020927611587963781} a^{25} + \frac{1216508152595936505528220}{12333107020927611587963781} a^{21} - \frac{3925411092666018839236006}{12333107020927611587963781} a^{17} + \frac{1505777891049793142796187}{12333107020927611587963781} a^{13} + \frac{5704433496969442786325374}{12333107020927611587963781} a^{9} + \frac{869477124971120933764461}{4111035673642537195987927} a^{5} + \frac{2855180718947302234205636}{12333107020927611587963781} a$, $\frac{1}{12333107020927611587963781} a^{38} + \frac{16392002085665156992}{12333107020927611587963781} a^{34} - \frac{926062360534987103046416}{12333107020927611587963781} a^{30} + \frac{1782878011745516536923664}{12333107020927611587963781} a^{26} + \frac{1216508152595936505528220}{12333107020927611587963781} a^{22} - \frac{3925411092666018839236006}{12333107020927611587963781} a^{18} + \frac{1505777891049793142796187}{12333107020927611587963781} a^{14} + \frac{5704433496969442786325374}{12333107020927611587963781} a^{10} + \frac{869477124971120933764461}{4111035673642537195987927} a^{6} + \frac{2855180718947302234205636}{12333107020927611587963781} a^{2}$, $\frac{1}{12333107020927611587963781} a^{39} + \frac{16392002085665156992}{12333107020927611587963781} a^{35} - \frac{926062360534987103046416}{12333107020927611587963781} a^{31} + \frac{1782878011745516536923664}{12333107020927611587963781} a^{27} + \frac{1216508152595936505528220}{12333107020927611587963781} a^{23} - \frac{3925411092666018839236006}{12333107020927611587963781} a^{19} + \frac{1505777891049793142796187}{12333107020927611587963781} a^{15} + \frac{5704433496969442786325374}{12333107020927611587963781} a^{11} + \frac{869477124971120933764461}{4111035673642537195987927} a^{7} + \frac{2855180718947302234205636}{12333107020927611587963781} a^{3}$
Class group and class number
$C_{155}\times C_{155}$, which has order $24025$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{305129630405970959162}{37260142057183116579951} a^{37} + \frac{17799580877135952392828}{12420047352394372193317} a^{33} + \frac{2829650962622683518719896}{37260142057183116579951} a^{29} + \frac{16476744417685704651858369}{12420047352394372193317} a^{25} + \frac{86452717278717868054754281}{12420047352394372193317} a^{21} + \frac{544445021764559724516187729}{37260142057183116579951} a^{17} + \frac{158812680314314296283165743}{12420047352394372193317} a^{13} + \frac{50549700223384721143289054}{12420047352394372193317} a^{9} + \frac{12680131192389703024317364}{37260142057183116579951} a^{5} + \frac{223816153561166017405595}{37260142057183116579951} a \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3147005109105615.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |