Normalized defining polynomial
\( x^{40} - 151 x^{35} + 25926 x^{30} - 4386701 x^{25} + 743410601 x^{20} + 13708440625 x^{15} + 253183593750 x^{10} + 4608154296875 x^{5} + 95367431640625 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{41} a^{20} - \frac{14}{41} a^{15} - \frac{9}{41} a^{10} + \frac{3}{41} a^{5} - \frac{1}{41}$, $\frac{1}{205} a^{21} - \frac{96}{205} a^{16} - \frac{9}{205} a^{11} + \frac{44}{205} a^{6} + \frac{81}{205} a$, $\frac{1}{1025} a^{22} - \frac{301}{1025} a^{17} + \frac{401}{1025} a^{12} + \frac{249}{1025} a^{7} - \frac{124}{1025} a^{2}$, $\frac{1}{5125} a^{23} + \frac{724}{5125} a^{18} + \frac{1426}{5125} a^{13} + \frac{2299}{5125} a^{8} - \frac{1149}{5125} a^{3}$, $\frac{1}{25625} a^{24} - \frac{9526}{25625} a^{19} + \frac{6551}{25625} a^{14} - \frac{7951}{25625} a^{9} - \frac{6274}{25625} a^{4}$, $\frac{1}{95249483253125} a^{25} - \frac{176}{128125} a^{20} + \frac{10951}{128125} a^{15} - \frac{25476}{128125} a^{10} + \frac{15626}{128125} a^{5} + \frac{8925313913}{30479834641}$, $\frac{1}{476247416265625} a^{26} - \frac{176}{640625} a^{21} + \frac{139076}{640625} a^{16} + \frac{230774}{640625} a^{11} + \frac{15626}{640625} a^{6} - \frac{52034355369}{152399173205} a$, $\frac{1}{2381237081328125} a^{27} - \frac{176}{3203125} a^{22} - \frac{1142174}{3203125} a^{17} - \frac{1050476}{3203125} a^{12} + \frac{656251}{3203125} a^{7} + \frac{252763991041}{761995866025} a^{2}$, $\frac{1}{11906185406640625} a^{28} - \frac{176}{16015625} a^{23} + \frac{2060951}{16015625} a^{18} - \frac{7456726}{16015625} a^{13} + \frac{7062501}{16015625} a^{8} + \frac{1014759857066}{3809979330125} a^{3}$, $\frac{1}{59530927033203125} a^{29} - \frac{176}{80078125} a^{24} + \frac{2060951}{80078125} a^{19} + \frac{8558899}{80078125} a^{14} + \frac{23078126}{80078125} a^{9} - \frac{6605198803184}{19049896650625} a^{4}$, $\frac{1}{297654635166015625} a^{30} - \frac{151}{297654635166015625} a^{25} + \frac{2029701}{400390625} a^{20} - \frac{14066101}{400390625} a^{15} + \frac{58593751}{400390625} a^{10} - \frac{4646311869549}{95249483253125} a^{5} - \frac{9664311887}{30479834641}$, $\frac{1}{1488273175830078125} a^{31} - \frac{151}{1488273175830078125} a^{26} + \frac{2029701}{2001953125} a^{21} - \frac{14066101}{2001953125} a^{16} + \frac{458984376}{2001953125} a^{11} - \frac{4646311869549}{476247416265625} a^{6} - \frac{9664311887}{152399173205} a$, $\frac{1}{7441365879150390625} a^{32} - \frac{151}{7441365879150390625} a^{27} + \frac{2029701}{10009765625} a^{22} + \frac{1987887024}{10009765625} a^{17} - \frac{3544921874}{10009765625} a^{12} - \frac{957141144400799}{2381237081328125} a^{7} - \frac{9664311887}{761995866025} a^{2}$, $\frac{1}{37206829395751953125} a^{33} - \frac{151}{37206829395751953125} a^{28} + \frac{2029701}{50048828125} a^{23} + \frac{11997652649}{50048828125} a^{18} - \frac{3544921874}{50048828125} a^{13} - \frac{3338378225728924}{11906185406640625} a^{8} - \frac{9664311887}{3809979330125} a^{3}$, $\frac{1}{186034146978759765625} a^{34} - \frac{151}{186034146978759765625} a^{29} + \frac{2029701}{250244140625} a^{24} - \frac{88100003601}{250244140625} a^{19} + \frac{46503906251}{250244140625} a^{14} - \frac{15244563632369549}{59530927033203125} a^{9} + \frac{7610294348363}{19049896650625} a^{4}$, $\frac{1}{930170734893798828125} a^{35} - \frac{151}{930170734893798828125} a^{30} + \frac{25926}{930170734893798828125} a^{25} + \frac{1860933899}{1251220703125} a^{20} - \frac{335693359374}{1251220703125} a^{15} - \frac{72598691499519549}{297654635166015625} a^{10} + \frac{39493688204051}{95249483253125} a^{5} + \frac{5947284959}{30479834641}$, $\frac{1}{4650853674468994140625} a^{36} - \frac{151}{4650853674468994140625} a^{31} + \frac{25926}{4650853674468994140625} a^{26} + \frac{1860933899}{6256103515625} a^{21} - \frac{335693359374}{6256103515625} a^{16} + \frac{225055943666496076}{1488273175830078125} a^{11} + \frac{229992654710301}{476247416265625} a^{6} - \frac{55012384323}{152399173205} a$, $\frac{1}{23254268372344970703125} a^{37} - \frac{151}{23254268372344970703125} a^{32} + \frac{25926}{23254268372344970703125} a^{27} + \frac{1860933899}{31280517578125} a^{22} - \frac{12847900390624}{31280517578125} a^{17} - \frac{2751490407993660174}{7441365879150390625} a^{12} + \frac{706240070975926}{2381237081328125} a^{7} - \frac{207411557528}{761995866025} a^{2}$, $\frac{1}{116271341861724853515625} a^{38} - \frac{151}{116271341861724853515625} a^{33} + \frac{25926}{116271341861724853515625} a^{28} + \frac{1860933899}{156402587890625} a^{23} - \frac{12847900390624}{156402587890625} a^{18} - \frac{17634222166294441424}{37206829395751953125} a^{13} - \frac{1674997010352199}{11906185406640625} a^{8} + \frac{554584308497}{3809979330125} a^{3}$, $\frac{1}{581356709308624267578125} a^{39} - \frac{151}{581356709308624267578125} a^{34} + \frac{25926}{581356709308624267578125} a^{29} + \frac{1860933899}{782012939453125} a^{24} - \frac{169250488281249}{782012939453125} a^{19} - \frac{54841051562046394549}{186034146978759765625} a^{14} + \frac{10231188396288426}{59530927033203125} a^{9} - \frac{3255395021628}{19049896650625} a^{4}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{6}{3809979330125} a^{28} - \frac{662854323131}{3809979330125} a^{3} \) (order $50$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20^{2}$ | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{4}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |