Normalized defining polynomial
\( x^{40} + 18 x^{38} + 212 x^{36} + 2080 x^{34} + 18496 x^{32} + 127072 x^{30} + 747840 x^{28} + 3915520 x^{26} + 17928960 x^{24} + 63672832 x^{22} + 198264832 x^{20} + 541724672 x^{18} + 1196122112 x^{16} + 1663434752 x^{14} + 2113028096 x^{12} + 2363097088 x^{10} + 1904214016 x^{8} + 308412416 x^{6} + 49807360 x^{4} + 7864320 x^{2} + 1048576 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$, $\frac{1}{16384} a^{28}$, $\frac{1}{16384} a^{29}$, $\frac{1}{32768} a^{30}$, $\frac{1}{32768} a^{31}$, $\frac{1}{65536} a^{32}$, $\frac{1}{65536} a^{33}$, $\frac{1}{30726607481960847245312} a^{34} - \frac{6759100026384703}{7681651870490211811328} a^{32} - \frac{65833524192462789}{7681651870490211811328} a^{30} + \frac{20433294832115723}{3840825935245105905664} a^{28} - \frac{86876548576091573}{1920412967622552952832} a^{26} - \frac{50672309448483447}{480103241905638238208} a^{24} - \frac{87435839101689013}{480103241905638238208} a^{22} + \frac{4187296534272345}{240051620952819119104} a^{20} + \frac{6995903662163519}{30006452619102389888} a^{18} - \frac{21450234570504517}{15003226309551194944} a^{16} + \frac{42104619363901185}{30006452619102389888} a^{14} + \frac{22360797328965165}{3750806577387798736} a^{12} + \frac{28627908967594925}{1875403288693899368} a^{10} - \frac{91697677915639135}{3750806577387798736} a^{8} + \frac{22514369310365389}{1875403288693899368} a^{6} - \frac{94466978223430401}{937701644346949684} a^{4} - \frac{39955723921154417}{468850822173474842} a^{2} - \frac{73884285512829285}{234425411086737421}$, $\frac{1}{30726607481960847245312} a^{35} - \frac{6759100026384703}{7681651870490211811328} a^{33} - \frac{65833524192462789}{7681651870490211811328} a^{31} + \frac{20433294832115723}{3840825935245105905664} a^{29} - \frac{86876548576091573}{1920412967622552952832} a^{27} - \frac{50672309448483447}{480103241905638238208} a^{25} - \frac{87435839101689013}{480103241905638238208} a^{23} + \frac{4187296534272345}{240051620952819119104} a^{21} + \frac{6995903662163519}{30006452619102389888} a^{19} - \frac{21450234570504517}{15003226309551194944} a^{17} + \frac{42104619363901185}{30006452619102389888} a^{15} + \frac{22360797328965165}{3750806577387798736} a^{13} + \frac{28627908967594925}{1875403288693899368} a^{11} - \frac{91697677915639135}{3750806577387798736} a^{9} + \frac{22514369310365389}{1875403288693899368} a^{7} - \frac{94466978223430401}{937701644346949684} a^{5} - \frac{39955723921154417}{468850822173474842} a^{3} - \frac{73884285512829285}{234425411086737421} a$, $\frac{1}{61453214963921694490624} a^{36} - \frac{68754752360449093}{15363303740980423622656} a^{32} - \frac{77128489216892857}{7681651870490211811328} a^{30} + \frac{58849607706851771}{3840825935245105905664} a^{28} - \frac{1779715984954641}{30006452619102389888} a^{26} - \frac{16809526586405449}{240051620952819119104} a^{24} - \frac{47267567493151067}{480103241905638238208} a^{22} + \frac{25615840045361013}{120025810476409559552} a^{20} + \frac{6623296589396319}{30006452619102389888} a^{18} - \frac{73659650091367177}{60012905238204779776} a^{16} + \frac{16155923098805981}{15003226309551194944} a^{14} - \frac{53504726083231895}{15003226309551194944} a^{12} - \frac{38860356124084795}{7501613154775597472} a^{10} - \frac{105689486442819809}{3750806577387798736} a^{8} + \frac{51675247862754947}{937701644346949684} a^{6} + \frac{72194495950593475}{937701644346949684} a^{4} + \frac{48637259237983121}{468850822173474842} a^{2} - \frac{75682692523940347}{234425411086737421}$, $\frac{1}{61453214963921694490624} a^{37} - \frac{68754752360449093}{15363303740980423622656} a^{33} - \frac{77128489216892857}{7681651870490211811328} a^{31} + \frac{58849607706851771}{3840825935245105905664} a^{29} - \frac{1779715984954641}{30006452619102389888} a^{27} - \frac{16809526586405449}{240051620952819119104} a^{25} - \frac{47267567493151067}{480103241905638238208} a^{23} + \frac{25615840045361013}{120025810476409559552} a^{21} + \frac{6623296589396319}{30006452619102389888} a^{19} - \frac{73659650091367177}{60012905238204779776} a^{17} + \frac{16155923098805981}{15003226309551194944} a^{15} - \frac{53504726083231895}{15003226309551194944} a^{13} - \frac{38860356124084795}{7501613154775597472} a^{11} - \frac{105689486442819809}{3750806577387798736} a^{9} + \frac{51675247862754947}{937701644346949684} a^{7} + \frac{72194495950593475}{937701644346949684} a^{5} + \frac{48637259237983121}{468850822173474842} a^{3} - \frac{75682692523940347}{234425411086737421} a$, $\frac{1}{122906429927843388981248} a^{38} - \frac{90192232013913741}{15363303740980423622656} a^{32} + \frac{107979966750978021}{7681651870490211811328} a^{30} + \frac{3308887197797235}{240051620952819119104} a^{28} - \frac{23291812546524549}{1920412967622552952832} a^{26} + \frac{33891342427068891}{480103241905638238208} a^{24} + \frac{23840458070988403}{120025810476409559552} a^{22} + \frac{22722263288480555}{120025810476409559552} a^{20} + \frac{51412482975660505}{120025810476409559552} a^{18} + \frac{331570794339577}{937701644346949684} a^{16} + \frac{26026248887311983}{7501613154775597472} a^{14} + \frac{37711569894111983}{7501613154775597472} a^{12} - \frac{2901180300692853}{1875403288693899368} a^{10} + \frac{41576451642245981}{3750806577387798736} a^{8} - \frac{10863455489497767}{234425411086737421} a^{6} - \frac{7153085222732233}{468850822173474842} a^{4} - \frac{34922295513083563}{234425411086737421} a^{2} - \frac{73505267368585198}{234425411086737421}$, $\frac{1}{122906429927843388981248} a^{39} - \frac{90192232013913741}{15363303740980423622656} a^{33} + \frac{107979966750978021}{7681651870490211811328} a^{31} + \frac{3308887197797235}{240051620952819119104} a^{29} - \frac{23291812546524549}{1920412967622552952832} a^{27} + \frac{33891342427068891}{480103241905638238208} a^{25} + \frac{23840458070988403}{120025810476409559552} a^{23} + \frac{22722263288480555}{120025810476409559552} a^{21} + \frac{51412482975660505}{120025810476409559552} a^{19} + \frac{331570794339577}{937701644346949684} a^{17} + \frac{26026248887311983}{7501613154775597472} a^{15} + \frac{37711569894111983}{7501613154775597472} a^{13} - \frac{2901180300692853}{1875403288693899368} a^{11} + \frac{41576451642245981}{3750806577387798736} a^{9} - \frac{10863455489497767}{234425411086737421} a^{7} - \frac{7153085222732233}{468850822173474842} a^{5} - \frac{34922295513083563}{234425411086737421} a^{3} - \frac{73505267368585198}{234425411086737421} a$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2151047996244805}{61453214963921694490624} a^{38} + \frac{4609388563381725}{7681651870490211811328} a^{36} + \frac{52885107614617839}{7681651870490211811328} a^{34} + \frac{255483043439704411}{3840825935245105905664} a^{32} + \frac{2250180579614601299}{3840825935245105905664} a^{30} + \frac{7492100170920655815}{1920412967622552952832} a^{28} + \frac{10772632740736518709}{480103241905638238208} a^{26} + \frac{6909046315672723327}{60012905238204779776} a^{24} + \frac{30791637481102599345}{60012905238204779776} a^{22} + \frac{51205697550607583025}{30006452619102389888} a^{20} + \frac{153070111875634784375}{30006452619102389888} a^{18} + \frac{3039184984637195773}{229056890222155648} a^{16} + \frac{792437410134917112583}{30006452619102389888} a^{14} + \frac{22978908241713110739}{937701644346949684} a^{12} + \frac{108172946429899787031}{3750806577387798736} a^{10} + \frac{48710850626048679763}{1875403288693899368} a^{8} + \frac{3944960566598793947}{937701644346949684} a^{6} - \frac{35081085650614397063}{937701644346949684} a^{4} + \frac{25259449327331853}{234425411086737421} a^{2} + \frac{3441676793991688}{234425411086737421} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20^{2}$ | R | $20^{2}$ | R | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | $20^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |