Normalized defining polynomial
\( x^{40} - 9 x^{38} + 53 x^{36} - 260 x^{34} + 1156 x^{32} - 3971 x^{30} + 11685 x^{28} - 30590 x^{26} + 70035 x^{24} - 124361 x^{22} + 193618 x^{20} - 264514 x^{18} + 292022 x^{16} - 203056 x^{14} + 128969 x^{12} - 72116 x^{10} + 29056 x^{8} - 2353 x^{6} + 190 x^{4} - 15 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $\frac{1}{234425411086737421} a^{34} + \frac{13518200052769406}{234425411086737421} a^{32} - \frac{65833524192462789}{234425411086737421} a^{30} - \frac{20433294832115723}{234425411086737421} a^{28} - \frac{86876548576091573}{234425411086737421} a^{26} + \frac{101344618896966894}{234425411086737421} a^{24} - \frac{87435839101689013}{234425411086737421} a^{22} - \frac{4187296534272345}{234425411086737421} a^{20} + \frac{27983614648654076}{234425411086737421} a^{18} + \frac{85800938282018068}{234425411086737421} a^{16} + \frac{42104619363901185}{234425411086737421} a^{14} - \frac{89443189315860660}{234425411086737421} a^{12} + \frac{114511635870379700}{234425411086737421} a^{10} + \frac{91697677915639135}{234425411086737421} a^{8} + \frac{22514369310365389}{234425411086737421} a^{6} + \frac{94466978223430401}{234425411086737421} a^{4} - \frac{39955723921154417}{234425411086737421} a^{2} + \frac{73884285512829285}{234425411086737421}$, $\frac{1}{234425411086737421} a^{35} + \frac{13518200052769406}{234425411086737421} a^{33} - \frac{65833524192462789}{234425411086737421} a^{31} - \frac{20433294832115723}{234425411086737421} a^{29} - \frac{86876548576091573}{234425411086737421} a^{27} + \frac{101344618896966894}{234425411086737421} a^{25} - \frac{87435839101689013}{234425411086737421} a^{23} - \frac{4187296534272345}{234425411086737421} a^{21} + \frac{27983614648654076}{234425411086737421} a^{19} + \frac{85800938282018068}{234425411086737421} a^{17} + \frac{42104619363901185}{234425411086737421} a^{15} - \frac{89443189315860660}{234425411086737421} a^{13} + \frac{114511635870379700}{234425411086737421} a^{11} + \frac{91697677915639135}{234425411086737421} a^{9} + \frac{22514369310365389}{234425411086737421} a^{7} + \frac{94466978223430401}{234425411086737421} a^{5} - \frac{39955723921154417}{234425411086737421} a^{3} + \frac{73884285512829285}{234425411086737421} a$, $\frac{1}{234425411086737421} a^{36} - \frac{68754752360449093}{234425411086737421} a^{32} + \frac{77128489216892857}{234425411086737421} a^{30} + \frac{58849607706851771}{234425411086737421} a^{28} + \frac{113901823037097024}{234425411086737421} a^{26} - \frac{67238106345621796}{234425411086737421} a^{24} + \frac{47267567493151067}{234425411086737421} a^{22} + \frac{51231680090722026}{234425411086737421} a^{20} - \frac{26493186357585276}{234425411086737421} a^{18} - \frac{73659650091367177}{234425411086737421} a^{16} - \frac{32311846197611962}{234425411086737421} a^{14} - \frac{53504726083231895}{234425411086737421} a^{12} + \frac{38860356124084795}{234425411086737421} a^{10} - \frac{105689486442819809}{234425411086737421} a^{8} - \frac{103350495725509894}{234425411086737421} a^{6} + \frac{72194495950593475}{234425411086737421} a^{4} - \frac{48637259237983121}{234425411086737421} a^{2} - \frac{75682692523940347}{234425411086737421}$, $\frac{1}{234425411086737421} a^{37} - \frac{68754752360449093}{234425411086737421} a^{33} + \frac{77128489216892857}{234425411086737421} a^{31} + \frac{58849607706851771}{234425411086737421} a^{29} + \frac{113901823037097024}{234425411086737421} a^{27} - \frac{67238106345621796}{234425411086737421} a^{25} + \frac{47267567493151067}{234425411086737421} a^{23} + \frac{51231680090722026}{234425411086737421} a^{21} - \frac{26493186357585276}{234425411086737421} a^{19} - \frac{73659650091367177}{234425411086737421} a^{17} - \frac{32311846197611962}{234425411086737421} a^{15} - \frac{53504726083231895}{234425411086737421} a^{13} + \frac{38860356124084795}{234425411086737421} a^{11} - \frac{105689486442819809}{234425411086737421} a^{9} - \frac{103350495725509894}{234425411086737421} a^{7} + \frac{72194495950593475}{234425411086737421} a^{5} - \frac{48637259237983121}{234425411086737421} a^{3} - \frac{75682692523940347}{234425411086737421} a$, $\frac{1}{234425411086737421} a^{38} + \frac{90192232013913741}{234425411086737421} a^{32} + \frac{107979966750978021}{234425411086737421} a^{30} - \frac{52942195164755760}{234425411086737421} a^{28} - \frac{23291812546524549}{234425411086737421} a^{26} - \frac{67782684854137782}{234425411086737421} a^{24} + \frac{95361832283953612}{234425411086737421} a^{22} - \frac{45444526576961110}{234425411086737421} a^{20} + \frac{51412482975660505}{234425411086737421} a^{18} - \frac{21220530837732928}{234425411086737421} a^{16} + \frac{104104995549247932}{234425411086737421} a^{14} - \frac{75423139788223966}{234425411086737421} a^{12} - \frac{11604721202771412}{234425411086737421} a^{10} - \frac{41576451642245981}{234425411086737421} a^{8} - \frac{86907643915982136}{234425411086737421} a^{6} + \frac{14306170445464466}{234425411086737421} a^{4} - \frac{69844591026167126}{234425411086737421} a^{2} + \frac{73505267368585198}{234425411086737421}$, $\frac{1}{234425411086737421} a^{39} + \frac{90192232013913741}{234425411086737421} a^{33} + \frac{107979966750978021}{234425411086737421} a^{31} - \frac{52942195164755760}{234425411086737421} a^{29} - \frac{23291812546524549}{234425411086737421} a^{27} - \frac{67782684854137782}{234425411086737421} a^{25} + \frac{95361832283953612}{234425411086737421} a^{23} - \frac{45444526576961110}{234425411086737421} a^{21} + \frac{51412482975660505}{234425411086737421} a^{19} - \frac{21220530837732928}{234425411086737421} a^{17} + \frac{104104995549247932}{234425411086737421} a^{15} - \frac{75423139788223966}{234425411086737421} a^{13} - \frac{11604721202771412}{234425411086737421} a^{11} - \frac{41576451642245981}{234425411086737421} a^{9} - \frac{86907643915982136}{234425411086737421} a^{7} + \frac{14306170445464466}{234425411086737421} a^{5} - \frac{69844591026167126}{234425411086737421} a^{3} + \frac{73505267368585198}{234425411086737421} a$
Class group and class number
$C_{155}$, which has order $155$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1033956405789076}{234425411086737421} a^{39} - \frac{8013162144865339}{234425411086737421} a^{37} + \frac{43721585159080928}{234425411086737421} a^{35} - \frac{205277567524804009}{234425411086737421} a^{33} + \frac{888242406601801218}{234425411086737421} a^{31} - \frac{2753832105775726525}{234425411086737421} a^{29} + \frac{7580192899941163425}{234425411086737421} a^{27} - \frac{18683370690521648518}{234425411086737421} a^{25} + \frac{39202718867588571471}{234425411086737421} a^{23} - \frac{54579899916561864416}{234425411086737421} a^{21} + \frac{77125910177024546068}{234425411086737421} a^{19} - \frac{89553253780290405314}{234425411086737421} a^{17} + \frac{62721826560962435845}{234425411086737421} a^{15} + \frac{28066822999132149804}{234425411086737421} a^{13} + \frac{22894305861155630396}{234425411086737421} a^{11} - \frac{9569672732737315517}{234425411086737421} a^{9} + \frac{774987253153404929}{234425411086737421} a^{7} - \frac{62591289564731565}{234425411086737421} a^{5} + \frac{10171515181693540290}{234425411086737421} a^{3} - \frac{332343130432203}{234425411086737421} a \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2347083738648341.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20^{2}$ | R | $20^{2}$ | R | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |