Normalized defining polynomial
\( x^{40} - 103 x^{36} + 5588 x^{32} - 164960 x^{28} + 2662270 x^{24} - 22941208 x^{20} + 92377760 x^{16} - 65359259 x^{12} - 534900542 x^{8} - 688869171 x^{4} + 19356878641 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{23} a^{24} + \frac{2}{23} a^{20} + \frac{11}{23} a^{16} + \frac{5}{23} a^{12} + \frac{9}{23} a^{8} - \frac{6}{23} a^{4} + \frac{3}{23}$, $\frac{1}{23} a^{25} + \frac{2}{23} a^{21} + \frac{11}{23} a^{17} + \frac{5}{23} a^{13} + \frac{9}{23} a^{9} - \frac{6}{23} a^{5} + \frac{3}{23} a$, $\frac{1}{23} a^{26} + \frac{2}{23} a^{22} + \frac{11}{23} a^{18} + \frac{5}{23} a^{14} + \frac{9}{23} a^{10} - \frac{6}{23} a^{6} + \frac{3}{23} a^{2}$, $\frac{1}{23} a^{27} + \frac{2}{23} a^{23} + \frac{11}{23} a^{19} + \frac{5}{23} a^{15} + \frac{9}{23} a^{11} - \frac{6}{23} a^{7} + \frac{3}{23} a^{3}$, $\frac{1}{23} a^{28} + \frac{7}{23} a^{20} + \frac{6}{23} a^{16} - \frac{1}{23} a^{12} - \frac{1}{23} a^{8} - \frac{8}{23} a^{4} - \frac{6}{23}$, $\frac{1}{23} a^{29} + \frac{7}{23} a^{21} + \frac{6}{23} a^{17} - \frac{1}{23} a^{13} - \frac{1}{23} a^{9} - \frac{8}{23} a^{5} - \frac{6}{23} a$, $\frac{1}{23} a^{30} + \frac{7}{23} a^{22} + \frac{6}{23} a^{18} - \frac{1}{23} a^{14} - \frac{1}{23} a^{10} - \frac{8}{23} a^{6} - \frac{6}{23} a^{2}$, $\frac{1}{23} a^{31} + \frac{7}{23} a^{23} + \frac{6}{23} a^{19} - \frac{1}{23} a^{15} - \frac{1}{23} a^{11} - \frac{8}{23} a^{7} - \frac{6}{23} a^{3}$, $\frac{1}{23} a^{32} - \frac{8}{23} a^{20} - \frac{9}{23} a^{16} + \frac{10}{23} a^{12} - \frac{2}{23} a^{8} - \frac{10}{23} a^{4} + \frac{2}{23}$, $\frac{1}{23} a^{33} - \frac{8}{23} a^{21} - \frac{9}{23} a^{17} + \frac{10}{23} a^{13} - \frac{2}{23} a^{9} - \frac{10}{23} a^{5} + \frac{2}{23} a$, $\frac{1}{23} a^{34} - \frac{8}{23} a^{22} - \frac{9}{23} a^{18} + \frac{10}{23} a^{14} - \frac{2}{23} a^{10} - \frac{10}{23} a^{6} + \frac{2}{23} a^{2}$, $\frac{1}{23} a^{35} - \frac{8}{23} a^{23} - \frac{9}{23} a^{19} + \frac{10}{23} a^{15} - \frac{2}{23} a^{11} - \frac{10}{23} a^{7} + \frac{2}{23} a^{3}$, $\frac{1}{504865755838624879384946830837208236933177} a^{36} + \frac{97227810530169528365222534175331655915}{504865755838624879384946830837208236933177} a^{32} - \frac{50928543632721181178578921730800738048}{4631795925124998893439879181992736118653} a^{28} - \frac{86580058795471976078992721971174854269}{21950685036461951277606383949443836388399} a^{24} - \frac{54605902244223838787787250286982970047860}{504865755838624879384946830837208236933177} a^{20} - \frac{112820361167668064323318996328396274890546}{504865755838624879384946830837208236933177} a^{16} + \frac{146371985391617614839235122650520474211403}{504865755838624879384946830837208236933177} a^{12} + \frac{223235101106977153706470631700377577496189}{504865755838624879384946830837208236933177} a^{8} - \frac{82358439571229192704024456325470937712003}{504865755838624879384946830837208236933177} a^{4} - \frac{4960586456183972640137394588245588657543}{21950685036461951277606383949443836388399}$, $\frac{1}{188314926927807080010585167902278672376075021} a^{37} + \frac{116438295750386444582449741928970581349591}{8187605518600307826547181213142550972872827} a^{33} - \frac{20793318990931629269191950910654792921581}{1727659880071624587253074934883290572257569} a^{29} - \frac{3931163962878985134141359559555783735171608}{188314926927807080010585167902278672376075021} a^{25} - \frac{90601181677649772858914121041742808072193735}{188314926927807080010585167902278672376075021} a^{21} - \frac{19912338264056348116724277318726736697226444}{188314926927807080010585167902278672376075021} a^{17} + \frac{88300323091822813945706473063616967410021787}{188314926927807080010585167902278672376075021} a^{13} + \frac{38000364048857995302467057408693220001930868}{188314926927807080010585167902278672376075021} a^{9} - \frac{41239892882937387838215994361532664165960128}{188314926927807080010585167902278672376075021} a^{5} - \frac{57098071843147456887389332808285847803407293}{188314926927807080010585167902278672376075021} a$, $\frac{1}{70241467744072040843948267627549944796275982833} a^{38} + \frac{166430191174265044756339968327217342828497133}{70241467744072040843948267627549944796275982833} a^{34} + \frac{8542390434407555455376483813293481086963761}{644417135266715971045396950711467383452073237} a^{30} - \frac{249559329520888219930556795953832312921356418}{70241467744072040843948267627549944796275982833} a^{26} - \frac{11553248907718080730024967819441314170094151535}{70241467744072040843948267627549944796275982833} a^{22} + \frac{34924788015122057455586645140373680815523999192}{70241467744072040843948267627549944796275982833} a^{18} - \frac{9663137849561143807471986351789161241281515170}{70241467744072040843948267627549944796275982833} a^{14} - \frac{15297384772289518563820403354807304752188874103}{70241467744072040843948267627549944796275982833} a^{10} + \frac{13042553725840354518984179584240263790484817418}{70241467744072040843948267627549944796275982833} a^{6} + \frac{11258172754862477959400815103754719596706839621}{70241467744072040843948267627549944796275982833} a^{2}$, $\frac{1}{26200067468538871234792703825076129409010941596709} a^{39} + \frac{299456162318089917336362002033540025605221815291}{26200067468538871234792703825076129409010941596709} a^{35} - \frac{2933361922739730573230131334652101095542066234}{240367591454485057199933062615377334027623317401} a^{31} - \frac{278161453447371136776421528713651439985143723279}{26200067468538871234792703825076129409010941596709} a^{27} - \frac{8788682740058285271404256322670682242191710441189}{26200067468538871234792703825076129409010941596709} a^{23} + \frac{8726542927129427633189359239401553806476456483658}{26200067468538871234792703825076129409010941596709} a^{19} - \frac{6795599717298607872296735058891614262864117769732}{26200067468538871234792703825076129409010941596709} a^{15} + \frac{10200255206702535552001699388564956405836644281392}{26200067468538871234792703825076129409010941596709} a^{11} - \frac{10266643551776180927251879682778069048568861191968}{26200067468538871234792703825076129409010941596709} a^{7} + \frac{6757493053044216313797736605941051591552082756060}{26200067468538871234792703825076129409010941596709} a^{3}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{61982565822024272246802953045}{4666217037116853354915957336124846483} a^{37} - \frac{5603665687321713249498294291785}{4666217037116853354915957336124846483} a^{33} + \frac{2530217119958042628969840986308}{42809330615750948210238140698393087} a^{29} - \frac{6751610933089392959325265388303797}{4666217037116853354915957336124846483} a^{25} + \frac{79982965391177819431109366225707675}{4666217037116853354915957336124846483} a^{21} - \frac{414018267261194009709396568033951761}{4666217037116853354915957336124846483} a^{17} + \frac{485841504990697262675098812540945766}{4666217037116853354915957336124846483} a^{13} + \frac{2494422731367515759218082924200581003}{4666217037116853354915957336124846483} a^{9} - \frac{4630609918613553147171189444264968455}{4666217037116853354915957336124846483} a^{5} - \frac{96162234377440979772421299141419186725}{4666217037116853354915957336124846483} a \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{4}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |