Properties

Label 40.0.16097830478...5625.1
Degree $40$
Signature $[0, 20]$
Discriminant $5^{70}\cdot 13^{20}$
Root discriminant $60.28$
Ramified primes $5, 13$
Class number Not computed
Class group Not computed
Galois group $C_2\times C_{20}$ (as 40T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3486784401, 0, 0, 0, 0, 875283327, 0, 0, 0, 0, 234070236, 0, 0, 0, 0, 62360361, 0, 0, 0, 0, 16617499, 0, 0, 0, 0, -256627, 0, 0, 0, 0, 3964, 0, 0, 0, 0, -61, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^40 - 61*x^35 + 3964*x^30 - 256627*x^25 + 16617499*x^20 + 62360361*x^15 + 234070236*x^10 + 875283327*x^5 + 3486784401)
 
gp: K = bnfinit(x^40 - 61*x^35 + 3964*x^30 - 256627*x^25 + 16617499*x^20 + 62360361*x^15 + 234070236*x^10 + 875283327*x^5 + 3486784401, 1)
 

Normalized defining polynomial

\( x^{40} - 61 x^{35} + 3964 x^{30} - 256627 x^{25} + 16617499 x^{20} + 62360361 x^{15} + 234070236 x^{10} + 875283327 x^{5} + 3486784401 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $40$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 20]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(160978304786984968542969308088509683418720896952436305582523345947265625=5^{70}\cdot 13^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $60.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(325=5^{2}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{325}(1,·)$, $\chi_{325}(131,·)$, $\chi_{325}(261,·)$, $\chi_{325}(129,·)$, $\chi_{325}(12,·)$, $\chi_{325}(66,·)$, $\chi_{325}(142,·)$, $\chi_{325}(144,·)$, $\chi_{325}(274,·)$, $\chi_{325}(259,·)$, $\chi_{325}(196,·)$, $\chi_{325}(27,·)$, $\chi_{325}(157,·)$, $\chi_{325}(287,·)$, $\chi_{325}(38,·)$, $\chi_{325}(168,·)$, $\chi_{325}(298,·)$, $\chi_{325}(51,·)$, $\chi_{325}(181,·)$, $\chi_{325}(183,·)$, $\chi_{325}(313,·)$, $\chi_{325}(53,·)$, $\chi_{325}(64,·)$, $\chi_{325}(194,·)$, $\chi_{325}(324,·)$, $\chi_{325}(118,·)$, $\chi_{325}(311,·)$, $\chi_{325}(77,·)$, $\chi_{325}(79,·)$, $\chi_{325}(209,·)$, $\chi_{325}(14,·)$, $\chi_{325}(207,·)$, $\chi_{325}(92,·)$, $\chi_{325}(222,·)$, $\chi_{325}(272,·)$, $\chi_{325}(103,·)$, $\chi_{325}(233,·)$, $\chi_{325}(116,·)$, $\chi_{325}(246,·)$, $\chi_{325}(248,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{19} a^{20} - \frac{2}{19} a^{15} + \frac{4}{19} a^{10} - \frac{8}{19} a^{5} - \frac{3}{19}$, $\frac{1}{57} a^{21} + \frac{17}{57} a^{16} + \frac{4}{57} a^{11} + \frac{11}{57} a^{6} + \frac{16}{57} a$, $\frac{1}{171} a^{22} + \frac{74}{171} a^{17} + \frac{4}{171} a^{12} - \frac{46}{171} a^{7} + \frac{16}{171} a^{2}$, $\frac{1}{513} a^{23} + \frac{74}{513} a^{18} - \frac{167}{513} a^{13} - \frac{46}{513} a^{8} + \frac{187}{513} a^{3}$, $\frac{1}{1539} a^{24} + \frac{587}{1539} a^{19} - \frac{167}{1539} a^{14} + \frac{467}{1539} a^{9} + \frac{187}{1539} a^{4}$, $\frac{1}{76722992883} a^{25} - \frac{64}{4617} a^{20} - \frac{2171}{4617} a^{15} + \frac{1454}{4617} a^{10} - \frac{2186}{4617} a^{5} - \frac{16360872}{315732481}$, $\frac{1}{230168978649} a^{26} - \frac{64}{13851} a^{21} - \frac{6788}{13851} a^{16} - \frac{3163}{13851} a^{11} - \frac{2186}{13851} a^{6} + \frac{299371609}{947197443} a$, $\frac{1}{690506935947} a^{27} - \frac{64}{41553} a^{22} + \frac{7063}{41553} a^{17} + \frac{10688}{41553} a^{12} - \frac{16037}{41553} a^{7} + \frac{1246569052}{2841592329} a^{2}$, $\frac{1}{2071520807841} a^{28} - \frac{64}{124659} a^{23} + \frac{7063}{124659} a^{18} + \frac{52241}{124659} a^{13} + \frac{25516}{124659} a^{8} + \frac{1246569052}{8524776987} a^{3}$, $\frac{1}{6214562423523} a^{29} - \frac{64}{373977} a^{24} + \frac{7063}{373977} a^{19} - \frac{72418}{373977} a^{14} + \frac{150175}{373977} a^{9} - \frac{7278207935}{25574330961} a^{4}$, $\frac{1}{18643687270569} a^{30} - \frac{61}{18643687270569} a^{25} - \frac{14078}{1121931} a^{20} - \frac{514921}{1121931} a^{15} - \frac{59048}{1121931} a^{10} + \frac{425071639}{4038052257} a^{5} - \frac{66466032}{315732481}$, $\frac{1}{55931061811707} a^{31} - \frac{61}{55931061811707} a^{26} - \frac{14078}{3365793} a^{21} - \frac{1636852}{3365793} a^{16} - \frac{1180979}{3365793} a^{11} + \frac{425071639}{12114156771} a^{6} - \frac{382198513}{947197443} a$, $\frac{1}{167793185435121} a^{32} - \frac{61}{167793185435121} a^{27} - \frac{14078}{10097379} a^{22} + \frac{1728941}{10097379} a^{17} + \frac{2184814}{10097379} a^{12} + \frac{425071639}{36342470313} a^{7} - \frac{382198513}{2841592329} a^{2}$, $\frac{1}{503379556305363} a^{33} - \frac{61}{503379556305363} a^{28} - \frac{14078}{30292137} a^{23} + \frac{11826320}{30292137} a^{18} + \frac{2184814}{30292137} a^{13} + \frac{36767541952}{109027410939} a^{8} - \frac{382198513}{8524776987} a^{3}$, $\frac{1}{1510138668916089} a^{34} - \frac{61}{1510138668916089} a^{29} - \frac{14078}{90876411} a^{24} + \frac{11826320}{90876411} a^{19} + \frac{2184814}{90876411} a^{14} + \frac{36767541952}{327082232817} a^{9} - \frac{382198513}{25574330961} a^{4}$, $\frac{1}{4530416006748267} a^{35} - \frac{61}{4530416006748267} a^{30} + \frac{3964}{4530416006748267} a^{25} - \frac{3349273}{272629233} a^{20} + \frac{1}{272629233} a^{15} + \frac{256627}{18643687270569} a^{10} + \frac{3964}{76722992883} a^{5} + \frac{61}{315732481}$, $\frac{1}{13591248020244801} a^{36} - \frac{61}{13591248020244801} a^{31} + \frac{3964}{13591248020244801} a^{26} - \frac{3349273}{817887699} a^{21} + \frac{272629234}{817887699} a^{16} - \frac{18643687013942}{55931061811707} a^{11} + \frac{76722996847}{230168978649} a^{6} - \frac{105244140}{315732481} a$, $\frac{1}{40773744060734403} a^{37} - \frac{61}{40773744060734403} a^{32} + \frac{3964}{40773744060734403} a^{27} - \frac{3349273}{2453663097} a^{22} - \frac{545258465}{2453663097} a^{17} - \frac{74574748825649}{167793185435121} a^{12} + \frac{76722996847}{690506935947} a^{7} + \frac{210488341}{947197443} a^{2}$, $\frac{1}{122321232182203209} a^{38} - \frac{61}{122321232182203209} a^{33} + \frac{3964}{122321232182203209} a^{28} - \frac{3349273}{7360989291} a^{23} - \frac{545258465}{7360989291} a^{18} - \frac{242367934260770}{503379556305363} a^{13} + \frac{767229932794}{2071520807841} a^{8} + \frac{1157685784}{2841592329} a^{3}$, $\frac{1}{366963696546609627} a^{39} - \frac{61}{366963696546609627} a^{34} + \frac{3964}{366963696546609627} a^{29} - \frac{3349273}{22082967873} a^{24} + \frac{6815730826}{22082967873} a^{19} + \frac{261011622044593}{1510138668916089} a^{14} + \frac{2838750740635}{6214562423523} a^{9} + \frac{1157685784}{8524776987} a^{4}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1}{947197443} a^{26} - \frac{727060321}{947197443} a \) (order $50$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{20}$ (as 40T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 40
The 40 conjugacy class representatives for $C_2\times C_{20}$
Character table for $C_2\times C_{20}$ is not computed

Intermediate fields

\(\Q(\sqrt{65}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{5}, \sqrt{13})\), 4.0.21125.1, \(\Q(\zeta_{5})\), 5.5.390625.1, 8.0.446265625.1, 10.10.283274078369140625.1, \(\Q(\zeta_{25})^+\), 10.10.56654815673828125.1, 20.20.80244203475886024534702301025390625.1, 20.0.401221017379430122673511505126953125.1, \(\Q(\zeta_{25})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20^{2}$ $20^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{10}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{4}$ R $20^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ $20^{2}$ $20^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
13Data not computed