Normalized defining polynomial
\( x^{40} - 61 x^{35} + 3964 x^{30} - 256627 x^{25} + 16617499 x^{20} + 62360361 x^{15} + 234070236 x^{10} + 875283327 x^{5} + 3486784401 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{19} a^{20} - \frac{2}{19} a^{15} + \frac{4}{19} a^{10} - \frac{8}{19} a^{5} - \frac{3}{19}$, $\frac{1}{57} a^{21} + \frac{17}{57} a^{16} + \frac{4}{57} a^{11} + \frac{11}{57} a^{6} + \frac{16}{57} a$, $\frac{1}{171} a^{22} + \frac{74}{171} a^{17} + \frac{4}{171} a^{12} - \frac{46}{171} a^{7} + \frac{16}{171} a^{2}$, $\frac{1}{513} a^{23} + \frac{74}{513} a^{18} - \frac{167}{513} a^{13} - \frac{46}{513} a^{8} + \frac{187}{513} a^{3}$, $\frac{1}{1539} a^{24} + \frac{587}{1539} a^{19} - \frac{167}{1539} a^{14} + \frac{467}{1539} a^{9} + \frac{187}{1539} a^{4}$, $\frac{1}{76722992883} a^{25} - \frac{64}{4617} a^{20} - \frac{2171}{4617} a^{15} + \frac{1454}{4617} a^{10} - \frac{2186}{4617} a^{5} - \frac{16360872}{315732481}$, $\frac{1}{230168978649} a^{26} - \frac{64}{13851} a^{21} - \frac{6788}{13851} a^{16} - \frac{3163}{13851} a^{11} - \frac{2186}{13851} a^{6} + \frac{299371609}{947197443} a$, $\frac{1}{690506935947} a^{27} - \frac{64}{41553} a^{22} + \frac{7063}{41553} a^{17} + \frac{10688}{41553} a^{12} - \frac{16037}{41553} a^{7} + \frac{1246569052}{2841592329} a^{2}$, $\frac{1}{2071520807841} a^{28} - \frac{64}{124659} a^{23} + \frac{7063}{124659} a^{18} + \frac{52241}{124659} a^{13} + \frac{25516}{124659} a^{8} + \frac{1246569052}{8524776987} a^{3}$, $\frac{1}{6214562423523} a^{29} - \frac{64}{373977} a^{24} + \frac{7063}{373977} a^{19} - \frac{72418}{373977} a^{14} + \frac{150175}{373977} a^{9} - \frac{7278207935}{25574330961} a^{4}$, $\frac{1}{18643687270569} a^{30} - \frac{61}{18643687270569} a^{25} - \frac{14078}{1121931} a^{20} - \frac{514921}{1121931} a^{15} - \frac{59048}{1121931} a^{10} + \frac{425071639}{4038052257} a^{5} - \frac{66466032}{315732481}$, $\frac{1}{55931061811707} a^{31} - \frac{61}{55931061811707} a^{26} - \frac{14078}{3365793} a^{21} - \frac{1636852}{3365793} a^{16} - \frac{1180979}{3365793} a^{11} + \frac{425071639}{12114156771} a^{6} - \frac{382198513}{947197443} a$, $\frac{1}{167793185435121} a^{32} - \frac{61}{167793185435121} a^{27} - \frac{14078}{10097379} a^{22} + \frac{1728941}{10097379} a^{17} + \frac{2184814}{10097379} a^{12} + \frac{425071639}{36342470313} a^{7} - \frac{382198513}{2841592329} a^{2}$, $\frac{1}{503379556305363} a^{33} - \frac{61}{503379556305363} a^{28} - \frac{14078}{30292137} a^{23} + \frac{11826320}{30292137} a^{18} + \frac{2184814}{30292137} a^{13} + \frac{36767541952}{109027410939} a^{8} - \frac{382198513}{8524776987} a^{3}$, $\frac{1}{1510138668916089} a^{34} - \frac{61}{1510138668916089} a^{29} - \frac{14078}{90876411} a^{24} + \frac{11826320}{90876411} a^{19} + \frac{2184814}{90876411} a^{14} + \frac{36767541952}{327082232817} a^{9} - \frac{382198513}{25574330961} a^{4}$, $\frac{1}{4530416006748267} a^{35} - \frac{61}{4530416006748267} a^{30} + \frac{3964}{4530416006748267} a^{25} - \frac{3349273}{272629233} a^{20} + \frac{1}{272629233} a^{15} + \frac{256627}{18643687270569} a^{10} + \frac{3964}{76722992883} a^{5} + \frac{61}{315732481}$, $\frac{1}{13591248020244801} a^{36} - \frac{61}{13591248020244801} a^{31} + \frac{3964}{13591248020244801} a^{26} - \frac{3349273}{817887699} a^{21} + \frac{272629234}{817887699} a^{16} - \frac{18643687013942}{55931061811707} a^{11} + \frac{76722996847}{230168978649} a^{6} - \frac{105244140}{315732481} a$, $\frac{1}{40773744060734403} a^{37} - \frac{61}{40773744060734403} a^{32} + \frac{3964}{40773744060734403} a^{27} - \frac{3349273}{2453663097} a^{22} - \frac{545258465}{2453663097} a^{17} - \frac{74574748825649}{167793185435121} a^{12} + \frac{76722996847}{690506935947} a^{7} + \frac{210488341}{947197443} a^{2}$, $\frac{1}{122321232182203209} a^{38} - \frac{61}{122321232182203209} a^{33} + \frac{3964}{122321232182203209} a^{28} - \frac{3349273}{7360989291} a^{23} - \frac{545258465}{7360989291} a^{18} - \frac{242367934260770}{503379556305363} a^{13} + \frac{767229932794}{2071520807841} a^{8} + \frac{1157685784}{2841592329} a^{3}$, $\frac{1}{366963696546609627} a^{39} - \frac{61}{366963696546609627} a^{34} + \frac{3964}{366963696546609627} a^{29} - \frac{3349273}{22082967873} a^{24} + \frac{6815730826}{22082967873} a^{19} + \frac{261011622044593}{1510138668916089} a^{14} + \frac{2838750740635}{6214562423523} a^{9} + \frac{1157685784}{8524776987} a^{4}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{947197443} a^{26} - \frac{727060321}{947197443} a \) (order $50$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20^{2}$ | $20^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{4}$ | R | $20^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||