Normalized defining polynomial
\( x^{40} + 88 x^{38} + 3476 x^{36} + 81664 x^{34} + 1275010 x^{32} + 14004496 x^{30} + 111779800 x^{28} + 660609664 x^{26} + 2919917792 x^{24} + 9689664512 x^{22} + 24119005504 x^{20} + 44817432000 x^{18} + 61669393368 x^{16} + 62138831744 x^{14} + 45166558624 x^{12} + 23198669824 x^{10} + 8169678000 x^{8} + 1881544192 x^{6} + 261429696 x^{4} + 18740480 x^{2} + 468512 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{22} a^{10}$, $\frac{1}{22} a^{11}$, $\frac{1}{22} a^{12}$, $\frac{1}{22} a^{13}$, $\frac{1}{22} a^{14}$, $\frac{1}{22} a^{15}$, $\frac{1}{44} a^{16}$, $\frac{1}{44} a^{17}$, $\frac{1}{44} a^{18}$, $\frac{1}{44} a^{19}$, $\frac{1}{484} a^{20}$, $\frac{1}{484} a^{21}$, $\frac{1}{484} a^{22}$, $\frac{1}{484} a^{23}$, $\frac{1}{968} a^{24}$, $\frac{1}{968} a^{25}$, $\frac{1}{968} a^{26}$, $\frac{1}{968} a^{27}$, $\frac{1}{968} a^{28}$, $\frac{1}{968} a^{29}$, $\frac{1}{10648} a^{30}$, $\frac{1}{10648} a^{31}$, $\frac{1}{21296} a^{32}$, $\frac{1}{21296} a^{33}$, $\frac{1}{21296} a^{34}$, $\frac{1}{21296} a^{35}$, $\frac{1}{12628528} a^{36} - \frac{185}{12628528} a^{34} - \frac{5}{12628528} a^{32} - \frac{30}{789283} a^{30} + \frac{223}{574024} a^{28} + \frac{35}{71753} a^{26} - \frac{63}{143506} a^{24} + \frac{31}{287012} a^{22} + \frac{24}{71753} a^{20} - \frac{3}{26092} a^{18} + \frac{2}{593} a^{16} + \frac{111}{13046} a^{14} - \frac{197}{13046} a^{12} - \frac{9}{593} a^{10} - \frac{3}{593} a^{8} - \frac{157}{593} a^{6} + \frac{188}{593} a^{4} - \frac{278}{593} a^{2} + \frac{233}{593}$, $\frac{1}{12628528} a^{37} - \frac{185}{12628528} a^{35} - \frac{5}{12628528} a^{33} - \frac{30}{789283} a^{31} + \frac{223}{574024} a^{29} + \frac{35}{71753} a^{27} - \frac{63}{143506} a^{25} + \frac{31}{287012} a^{23} + \frac{24}{71753} a^{21} - \frac{3}{26092} a^{19} + \frac{2}{593} a^{17} + \frac{111}{13046} a^{15} - \frac{197}{13046} a^{13} - \frac{9}{593} a^{11} - \frac{3}{593} a^{9} - \frac{157}{593} a^{7} + \frac{188}{593} a^{5} - \frac{278}{593} a^{3} + \frac{233}{593} a$, $\frac{1}{791511224274688215168014909669168} a^{38} - \frac{2157876358078093559102377}{395755612137344107584007454834584} a^{36} - \frac{2829139382746872149809601697}{791511224274688215168014909669168} a^{34} - \frac{33404360086911144142345885}{791511224274688215168014909669168} a^{32} + \frac{1521157875179169395190080615}{35977782921576737053091586803144} a^{30} - \frac{9213011251690050797674695743}{17988891460788368526545793401572} a^{28} + \frac{524880950838172400662676653}{3270707538325157913917416982104} a^{26} + \frac{14607947977648550842552911195}{35977782921576737053091586803144} a^{24} + \frac{52203028330993083928174391}{148668524469325359723518953732} a^{22} + \frac{8309365215424094927240598603}{8994445730394184263272896700786} a^{20} + \frac{499266564399139750445238209}{74334262234662679861759476866} a^{18} + \frac{5070514597439565857943839233}{1635353769162578956958708491052} a^{16} - \frac{3963732011874850120007530932}{408838442290644739239677122763} a^{14} - \frac{6901921729114742833595390811}{408838442290644739239677122763} a^{12} - \frac{12011777515535292632236960609}{817676884581289478479354245526} a^{10} - \frac{2694916966650719643325665393}{37167131117331339930879738433} a^{8} + \frac{2072499877393610020876743631}{37167131117331339930879738433} a^{6} - \frac{8461369723998809660507220594}{37167131117331339930879738433} a^{4} - \frac{4939112971512775719492213548}{37167131117331339930879738433} a^{2} - \frac{6686746252477004080811094082}{37167131117331339930879738433}$, $\frac{1}{791511224274688215168014909669168} a^{39} - \frac{2157876358078093559102377}{395755612137344107584007454834584} a^{37} - \frac{2829139382746872149809601697}{791511224274688215168014909669168} a^{35} - \frac{33404360086911144142345885}{791511224274688215168014909669168} a^{33} + \frac{1521157875179169395190080615}{35977782921576737053091586803144} a^{31} - \frac{9213011251690050797674695743}{17988891460788368526545793401572} a^{29} + \frac{524880950838172400662676653}{3270707538325157913917416982104} a^{27} + \frac{14607947977648550842552911195}{35977782921576737053091586803144} a^{25} + \frac{52203028330993083928174391}{148668524469325359723518953732} a^{23} + \frac{8309365215424094927240598603}{8994445730394184263272896700786} a^{21} + \frac{499266564399139750445238209}{74334262234662679861759476866} a^{19} + \frac{5070514597439565857943839233}{1635353769162578956958708491052} a^{17} - \frac{3963732011874850120007530932}{408838442290644739239677122763} a^{15} - \frac{6901921729114742833595390811}{408838442290644739239677122763} a^{13} - \frac{12011777515535292632236960609}{817676884581289478479354245526} a^{11} - \frac{2694916966650719643325665393}{37167131117331339930879738433} a^{9} + \frac{2072499877393610020876743631}{37167131117331339930879738433} a^{7} - \frac{8461369723998809660507220594}{37167131117331339930879738433} a^{5} - \frac{4939112971512775719492213548}{37167131117331339930879738433} a^{3} - \frac{6686746252477004080811094082}{37167131117331339930879738433} a$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 40 |
| The 40 conjugacy class representatives for $C_{40}$ |
| Character table for $C_{40}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{11})^+\), 8.0.31441308090368.8, 10.10.7024111812608.1, 20.20.1655513490330868290261743826894848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $40$ | $40$ | $20^{2}$ | R | $40$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{8}$ | $40$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{10}$ | $40$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | $40$ | $20^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | $40$ | $40$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||