Normalized defining polynomial
\( x^{40} - 33 x^{36} + 737 x^{32} - 8954 x^{28} + 78650 x^{24} - 380787 x^{20} + 1299056 x^{16} - 1686377 x^{12} + 1610510 x^{8} - 161051 x^{4} + 14641 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{11} a^{16}$, $\frac{1}{11} a^{17}$, $\frac{1}{11} a^{18}$, $\frac{1}{11} a^{19}$, $\frac{1}{121} a^{20}$, $\frac{1}{121} a^{21}$, $\frac{1}{121} a^{22}$, $\frac{1}{121} a^{23}$, $\frac{1}{121} a^{24}$, $\frac{1}{121} a^{25}$, $\frac{1}{121} a^{26}$, $\frac{1}{121} a^{27}$, $\frac{1}{13189} a^{28} + \frac{43}{13189} a^{24} + \frac{24}{13189} a^{20} + \frac{53}{1199} a^{16} - \frac{48}{1199} a^{12} - \frac{23}{109} a^{8} - \frac{27}{109} a^{4} + \frac{48}{109}$, $\frac{1}{13189} a^{29} + \frac{43}{13189} a^{25} + \frac{24}{13189} a^{21} + \frac{53}{1199} a^{17} - \frac{48}{1199} a^{13} - \frac{23}{109} a^{9} - \frac{27}{109} a^{5} + \frac{48}{109} a$, $\frac{1}{145079} a^{30} - \frac{6}{13189} a^{26} + \frac{2}{1199} a^{22} - \frac{15}{1199} a^{18} - \frac{4}{109} a^{14} - \frac{23}{1199} a^{10} - \frac{52}{109} a^{6} + \frac{44}{109} a^{2}$, $\frac{1}{145079} a^{31} - \frac{6}{13189} a^{27} + \frac{2}{1199} a^{23} - \frac{15}{1199} a^{19} - \frac{4}{109} a^{15} - \frac{23}{1199} a^{11} - \frac{52}{109} a^{7} + \frac{44}{109} a^{3}$, $\frac{1}{555217333} a^{32} - \frac{1271}{50474303} a^{28} - \frac{17914}{4588573} a^{24} - \frac{193916}{50474303} a^{20} - \frac{34607}{4588573} a^{16} - \frac{28901}{4588573} a^{12} + \frac{174667}{417143} a^{8} + \frac{1499}{417143} a^{4} + \frac{32802}{417143}$, $\frac{1}{555217333} a^{33} - \frac{1271}{50474303} a^{29} - \frac{17914}{4588573} a^{25} - \frac{193916}{50474303} a^{21} - \frac{34607}{4588573} a^{17} - \frac{28901}{4588573} a^{13} + \frac{174667}{417143} a^{9} + \frac{1499}{417143} a^{5} + \frac{32802}{417143} a$, $\frac{1}{555217333} a^{34} + \frac{1327}{555217333} a^{30} + \frac{128241}{50474303} a^{26} + \frac{142860}{50474303} a^{22} + \frac{152916}{4588573} a^{18} + \frac{131833}{4588573} a^{14} - \frac{9029}{417143} a^{10} + \frac{39769}{417143} a^{6} - \frac{127932}{417143} a^{2}$, $\frac{1}{555217333} a^{35} + \frac{1327}{555217333} a^{31} + \frac{128241}{50474303} a^{27} + \frac{142860}{50474303} a^{23} + \frac{152916}{4588573} a^{19} + \frac{131833}{4588573} a^{15} - \frac{9029}{417143} a^{11} + \frac{39769}{417143} a^{7} - \frac{127932}{417143} a^{3}$, $\frac{1}{977195276078659} a^{36} + \frac{15820}{977195276078659} a^{32} + \frac{652247789}{88835934188969} a^{28} - \frac{49834937375}{88835934188969} a^{24} + \frac{326488951231}{88835934188969} a^{20} - \frac{330541501756}{8075994017179} a^{16} - \frac{314178082332}{8075994017179} a^{12} + \frac{26337609990}{734181274289} a^{8} - \frac{181590528712}{734181274289} a^{4} - \frac{326842105055}{734181274289}$, $\frac{1}{977195276078659} a^{37} + \frac{15820}{977195276078659} a^{33} + \frac{652247789}{88835934188969} a^{29} - \frac{49834937375}{88835934188969} a^{25} + \frac{326488951231}{88835934188969} a^{21} - \frac{330541501756}{8075994017179} a^{17} - \frac{314178082332}{8075994017179} a^{13} + \frac{26337609990}{734181274289} a^{9} - \frac{181590528712}{734181274289} a^{5} - \frac{326842105055}{734181274289} a$, $\frac{1}{977195276078659} a^{38} + \frac{15820}{977195276078659} a^{34} + \frac{439117658}{977195276078659} a^{30} - \frac{9421289249}{88835934188969} a^{26} + \frac{178305574769}{88835934188969} a^{22} - \frac{229507381441}{8075994017179} a^{18} - \frac{17811329408}{8075994017179} a^{14} - \frac{289548579916}{8075994017179} a^{10} + \frac{168661088380}{734181274289} a^{6} + \frac{110972416310}{734181274289} a^{2}$, $\frac{1}{977195276078659} a^{39} + \frac{15820}{977195276078659} a^{35} + \frac{439117658}{977195276078659} a^{31} - \frac{9421289249}{88835934188969} a^{27} + \frac{178305574769}{88835934188969} a^{23} - \frac{229507381441}{8075994017179} a^{19} - \frac{17811329408}{8075994017179} a^{15} - \frac{289548579916}{8075994017179} a^{11} + \frac{168661088380}{734181274289} a^{7} + \frac{110972416310}{734181274289} a^{3}$
Class group and class number
$C_{2728}$, which has order $2728$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1720057043}{977195276078659} a^{38} + \frac{5002106944}{88835934188969} a^{34} - \frac{1210666196290}{977195276078659} a^{30} + \frac{1284644679822}{88835934188969} a^{26} - \frac{10905062085446}{88835934188969} a^{22} + \frac{4305094604522}{8075994017179} a^{18} - \frac{13178268444118}{8075994017179} a^{14} + \frac{5995963067436}{8075994017179} a^{10} - \frac{54554228858}{734181274289} a^{6} - \frac{2308120940327}{734181274289} a^{2} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24039412784024376 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||