Normalized defining polynomial
\( x^{40} + 20 x^{38} + 231 x^{36} + 1812 x^{34} + 10709 x^{32} + 49280 x^{30} + 181674 x^{28} + 540148 x^{26} + 1304886 x^{24} + 2544812 x^{22} + 3994121 x^{20} + 4954644 x^{18} + 4817692 x^{16} + 3548680 x^{14} + 1959963 x^{12} + 753104 x^{10} + 202622 x^{8} + 30356 x^{6} + 3025 x^{4} + 60 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{43} a^{32} + \frac{7}{43} a^{30} + \frac{11}{43} a^{28} + \frac{14}{43} a^{26} + \frac{2}{43} a^{24} - \frac{16}{43} a^{22} + \frac{6}{43} a^{20} - \frac{4}{43} a^{18} - \frac{21}{43} a^{16} - \frac{14}{43} a^{14} - \frac{16}{43} a^{12} - \frac{10}{43} a^{10} - \frac{20}{43} a^{8} + \frac{8}{43} a^{6} - \frac{18}{43} a^{4} - \frac{11}{43} a^{2} - \frac{20}{43}$, $\frac{1}{43} a^{33} + \frac{7}{43} a^{31} + \frac{11}{43} a^{29} + \frac{14}{43} a^{27} + \frac{2}{43} a^{25} - \frac{16}{43} a^{23} + \frac{6}{43} a^{21} - \frac{4}{43} a^{19} - \frac{21}{43} a^{17} - \frac{14}{43} a^{15} - \frac{16}{43} a^{13} - \frac{10}{43} a^{11} - \frac{20}{43} a^{9} + \frac{8}{43} a^{7} - \frac{18}{43} a^{5} - \frac{11}{43} a^{3} - \frac{20}{43} a$, $\frac{1}{43} a^{34} + \frac{5}{43} a^{30} - \frac{20}{43} a^{28} - \frac{10}{43} a^{26} + \frac{13}{43} a^{24} - \frac{11}{43} a^{22} - \frac{3}{43} a^{20} + \frac{7}{43} a^{18} + \frac{4}{43} a^{16} - \frac{4}{43} a^{14} + \frac{16}{43} a^{12} + \frac{7}{43} a^{10} + \frac{19}{43} a^{8} + \frac{12}{43} a^{6} - \frac{14}{43} a^{4} + \frac{14}{43} a^{2} + \frac{11}{43}$, $\frac{1}{43} a^{35} + \frac{5}{43} a^{31} - \frac{20}{43} a^{29} - \frac{10}{43} a^{27} + \frac{13}{43} a^{25} - \frac{11}{43} a^{23} - \frac{3}{43} a^{21} + \frac{7}{43} a^{19} + \frac{4}{43} a^{17} - \frac{4}{43} a^{15} + \frac{16}{43} a^{13} + \frac{7}{43} a^{11} + \frac{19}{43} a^{9} + \frac{12}{43} a^{7} - \frac{14}{43} a^{5} + \frac{14}{43} a^{3} + \frac{11}{43} a$, $\frac{1}{43} a^{36} - \frac{12}{43} a^{30} + \frac{21}{43} a^{28} - \frac{14}{43} a^{26} - \frac{21}{43} a^{24} - \frac{9}{43} a^{22} + \frac{20}{43} a^{20} - \frac{19}{43} a^{18} + \frac{15}{43} a^{16} + \frac{1}{43} a^{12} - \frac{17}{43} a^{10} - \frac{17}{43} a^{8} - \frac{11}{43} a^{6} + \frac{18}{43} a^{4} - \frac{20}{43} a^{2} + \frac{14}{43}$, $\frac{1}{43} a^{37} - \frac{12}{43} a^{31} + \frac{21}{43} a^{29} - \frac{14}{43} a^{27} - \frac{21}{43} a^{25} - \frac{9}{43} a^{23} + \frac{20}{43} a^{21} - \frac{19}{43} a^{19} + \frac{15}{43} a^{17} + \frac{1}{43} a^{13} - \frac{17}{43} a^{11} - \frac{17}{43} a^{9} - \frac{11}{43} a^{7} + \frac{18}{43} a^{5} - \frac{20}{43} a^{3} + \frac{14}{43} a$, $\frac{1}{224658185921597823206597305721673242429} a^{38} - \frac{2374344175392738427827280366860414928}{224658185921597823206597305721673242429} a^{36} - \frac{285817055617074802527238122251899232}{224658185921597823206597305721673242429} a^{34} - \frac{478984279929454491756230919551141021}{224658185921597823206597305721673242429} a^{32} - \frac{107673681794240679588774801985928040591}{224658185921597823206597305721673242429} a^{30} + \frac{2400223195729263538350937155486925638}{9767747213982514052460752422681445323} a^{28} - \frac{30437857782170667456149719282473579991}{224658185921597823206597305721673242429} a^{26} + \frac{110532439597435151544133323215691817415}{224658185921597823206597305721673242429} a^{24} - \frac{91870023879315432381228634584653724999}{224658185921597823206597305721673242429} a^{22} - \frac{77956631493468250661210837243011076131}{224658185921597823206597305721673242429} a^{20} + \frac{85673898183265813244371749103575000352}{224658185921597823206597305721673242429} a^{18} - \frac{29425089331420342408526207219836986433}{224658185921597823206597305721673242429} a^{16} + \frac{104242849965171210434514982108138137859}{224658185921597823206597305721673242429} a^{14} - \frac{23463589075018459856113909201501780962}{224658185921597823206597305721673242429} a^{12} - \frac{78898761176656569827479473790585015419}{224658185921597823206597305721673242429} a^{10} - \frac{78093783310368026344393388290776871130}{224658185921597823206597305721673242429} a^{8} + \frac{11461521967243433960178548894521116743}{224658185921597823206597305721673242429} a^{6} - \frac{31734736323324652260049632891251703692}{224658185921597823206597305721673242429} a^{4} + \frac{31873816148452625663929970040650155025}{224658185921597823206597305721673242429} a^{2} - \frac{4701273404819260251598919387234994898}{224658185921597823206597305721673242429}$, $\frac{1}{224658185921597823206597305721673242429} a^{39} - \frac{2374344175392738427827280366860414928}{224658185921597823206597305721673242429} a^{37} - \frac{285817055617074802527238122251899232}{224658185921597823206597305721673242429} a^{35} - \frac{478984279929454491756230919551141021}{224658185921597823206597305721673242429} a^{33} - \frac{107673681794240679588774801985928040591}{224658185921597823206597305721673242429} a^{31} + \frac{2400223195729263538350937155486925638}{9767747213982514052460752422681445323} a^{29} - \frac{30437857782170667456149719282473579991}{224658185921597823206597305721673242429} a^{27} + \frac{110532439597435151544133323215691817415}{224658185921597823206597305721673242429} a^{25} - \frac{91870023879315432381228634584653724999}{224658185921597823206597305721673242429} a^{23} - \frac{77956631493468250661210837243011076131}{224658185921597823206597305721673242429} a^{21} + \frac{85673898183265813244371749103575000352}{224658185921597823206597305721673242429} a^{19} - \frac{29425089331420342408526207219836986433}{224658185921597823206597305721673242429} a^{17} + \frac{104242849965171210434514982108138137859}{224658185921597823206597305721673242429} a^{15} - \frac{23463589075018459856113909201501780962}{224658185921597823206597305721673242429} a^{13} - \frac{78898761176656569827479473790585015419}{224658185921597823206597305721673242429} a^{11} - \frac{78093783310368026344393388290776871130}{224658185921597823206597305721673242429} a^{9} + \frac{11461521967243433960178548894521116743}{224658185921597823206597305721673242429} a^{7} - \frac{31734736323324652260049632891251703692}{224658185921597823206597305721673242429} a^{5} + \frac{31873816148452625663929970040650155025}{224658185921597823206597305721673242429} a^{3} - \frac{4701273404819260251598919387234994898}{224658185921597823206597305721673242429} a$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5080791259918300299740496912046655776}{224658185921597823206597305721673242429} a^{38} - \frac{101451924046779396192754697460220609903}{224658185921597823206597305721673242429} a^{36} - \frac{1170410703975544732317290899165648530944}{224658185921597823206597305721673242429} a^{34} - \frac{9169045072830155735773051351456043006888}{224658185921597823206597305721673242429} a^{32} - \frac{54119072247195440536245166968075232034124}{224658185921597823206597305721673242429} a^{30} - \frac{10811815539627020670491264589715384316209}{9767747213982514052460752422681445323} a^{28} - \frac{915237434801245657191272986145370561091636}{224658185921597823206597305721673242429} a^{26} - \frac{2715817121311291661864357525611831054438697}{224658185921597823206597305721673242429} a^{24} - \frac{6545746692282391260349052949038788511323256}{224658185921597823206597305721673242429} a^{22} - \frac{12728755983245911553739024764537008612303686}{224658185921597823206597305721673242429} a^{20} - \frac{19907024450807145541181119779646685184616180}{224658185921597823206597305721673242429} a^{18} - \frac{24577788814115491124269186355572593226390486}{224658185921597823206597305721673242429} a^{16} - \frac{23755874145055474657407286129028929607548560}{224658185921597823206597305721673242429} a^{14} - \frac{17348934078521056249858340015679985489178873}{224658185921597823206597305721673242429} a^{12} - \frac{9478004883568827701515967247945978499664712}{224658185921597823206597305721673242429} a^{10} - \frac{3575881750535688428642484243944196077931123}{224658185921597823206597305721673242429} a^{8} - \frac{942779388565629517685965251399746338891980}{224658185921597823206597305721673242429} a^{6} - \frac{133670352136312976626545402469902327786412}{224658185921597823206597305721673242429} a^{4} - \frac{13728457126047526199356492463843048242376}{224658185921597823206597305721673242429} a^{2} - \frac{47473013766506234347649214060219294152}{224658185921597823206597305721673242429} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{8}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||