Normalized defining polynomial
\( x^{40} + 4 x^{38} + 15 x^{36} + 56 x^{34} + 209 x^{32} + 780 x^{30} + 2911 x^{28} + 10864 x^{26} + 40545 x^{24} + 151316 x^{22} + 564719 x^{20} + 151316 x^{18} + 40545 x^{16} + 10864 x^{14} + 2911 x^{12} + 780 x^{10} + 209 x^{8} + 56 x^{6} + 15 x^{4} + 4 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{564719} a^{22} + \frac{151316}{564719}$, $\frac{1}{564719} a^{23} + \frac{151316}{564719} a$, $\frac{1}{564719} a^{24} + \frac{151316}{564719} a^{2}$, $\frac{1}{564719} a^{25} + \frac{151316}{564719} a^{3}$, $\frac{1}{564719} a^{26} + \frac{151316}{564719} a^{4}$, $\frac{1}{564719} a^{27} + \frac{151316}{564719} a^{5}$, $\frac{1}{564719} a^{28} + \frac{151316}{564719} a^{6}$, $\frac{1}{564719} a^{29} + \frac{151316}{564719} a^{7}$, $\frac{1}{564719} a^{30} + \frac{151316}{564719} a^{8}$, $\frac{1}{564719} a^{31} + \frac{151316}{564719} a^{9}$, $\frac{1}{564719} a^{32} + \frac{151316}{564719} a^{10}$, $\frac{1}{564719} a^{33} + \frac{151316}{564719} a^{11}$, $\frac{1}{564719} a^{34} + \frac{151316}{564719} a^{12}$, $\frac{1}{564719} a^{35} + \frac{151316}{564719} a^{13}$, $\frac{1}{564719} a^{36} + \frac{151316}{564719} a^{14}$, $\frac{1}{564719} a^{37} + \frac{151316}{564719} a^{15}$, $\frac{1}{564719} a^{38} + \frac{151316}{564719} a^{16}$, $\frac{1}{564719} a^{39} + \frac{151316}{564719} a^{17}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{56}{564719} a^{30} - \frac{109552575}{564719} a^{8} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{40}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||