Normalized defining polynomial
\( x^{40} + 57 x^{36} + 1280 x^{32} + 14374 x^{28} + 85046 x^{24} + 259698 x^{20} + 379157 x^{16} + 222625 x^{12} + 41990 x^{8} + 820 x^{4} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{14118201587196095474227} a^{36} - \frac{2651947530383184348186}{14118201587196095474227} a^{32} - \frac{6340003673962139395778}{14118201587196095474227} a^{28} - \frac{3400349059480953373554}{14118201587196095474227} a^{24} + \frac{2902670951706543829076}{14118201587196095474227} a^{20} + \frac{6369967583850831293907}{14118201587196095474227} a^{16} - \frac{6125273777511648692738}{14118201587196095474227} a^{12} + \frac{4476873473504989455572}{14118201587196095474227} a^{8} + \frac{2582026534985203037790}{14118201587196095474227} a^{4} - \frac{2015164774139463173484}{14118201587196095474227}$, $\frac{1}{14118201587196095474227} a^{37} - \frac{2651947530383184348186}{14118201587196095474227} a^{33} - \frac{6340003673962139395778}{14118201587196095474227} a^{29} - \frac{3400349059480953373554}{14118201587196095474227} a^{25} + \frac{2902670951706543829076}{14118201587196095474227} a^{21} + \frac{6369967583850831293907}{14118201587196095474227} a^{17} - \frac{6125273777511648692738}{14118201587196095474227} a^{13} + \frac{4476873473504989455572}{14118201587196095474227} a^{9} + \frac{2582026534985203037790}{14118201587196095474227} a^{5} - \frac{2015164774139463173484}{14118201587196095474227} a$, $\frac{1}{14118201587196095474227} a^{38} - \frac{2651947530383184348186}{14118201587196095474227} a^{34} - \frac{6340003673962139395778}{14118201587196095474227} a^{30} - \frac{3400349059480953373554}{14118201587196095474227} a^{26} + \frac{2902670951706543829076}{14118201587196095474227} a^{22} + \frac{6369967583850831293907}{14118201587196095474227} a^{18} - \frac{6125273777511648692738}{14118201587196095474227} a^{14} + \frac{4476873473504989455572}{14118201587196095474227} a^{10} + \frac{2582026534985203037790}{14118201587196095474227} a^{6} - \frac{2015164774139463173484}{14118201587196095474227} a^{2}$, $\frac{1}{14118201587196095474227} a^{39} - \frac{2651947530383184348186}{14118201587196095474227} a^{35} - \frac{6340003673962139395778}{14118201587196095474227} a^{31} - \frac{3400349059480953373554}{14118201587196095474227} a^{27} + \frac{2902670951706543829076}{14118201587196095474227} a^{23} + \frac{6369967583850831293907}{14118201587196095474227} a^{19} - \frac{6125273777511648692738}{14118201587196095474227} a^{15} + \frac{4476873473504989455572}{14118201587196095474227} a^{11} + \frac{2582026534985203037790}{14118201587196095474227} a^{7} - \frac{2015164774139463173484}{14118201587196095474227} a^{3}$
Class group and class number
$C_{110}\times C_{110}$, which has order $12100$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{398772571518731004694}{14118201587196095474227} a^{38} + \frac{22731418606447681518718}{14118201587196095474227} a^{34} + \frac{510507728716834005253668}{14118201587196095474227} a^{30} + \frac{5733729459516139143490252}{14118201587196095474227} a^{26} + \frac{33933956932744042548205033}{14118201587196095474227} a^{22} + \frac{103678878142004921547988119}{14118201587196095474227} a^{18} + \frac{151561773478616221575224766}{14118201587196095474227} a^{14} + \frac{89318133696368223029564203}{14118201587196095474227} a^{10} + \frac{17080580897272744456909535}{14118201587196095474227} a^{6} + \frac{412784981084028852042315}{14118201587196095474227} a^{2} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1535102994471753.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||