Normalized defining polynomial
\( x^{40} - 20 x^{38} + 230 x^{36} - 1800 x^{34} + 10625 x^{32} - 49003 x^{30} + 181750 x^{28} - 547185 x^{26} + 1349050 x^{24} - 2717025 x^{22} + 4465008 x^{20} - 5912800 x^{18} + 6247290 x^{16} - 5116175 x^{14} + 3173350 x^{12} - 1380878 x^{10} + 400970 x^{8} - 52915 x^{6} + 4850 x^{4} - 75 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{7} a^{32} - \frac{2}{7} a^{30} + \frac{2}{7} a^{28} + \frac{3}{7} a^{24} + \frac{1}{7} a^{22} - \frac{2}{7} a^{18} - \frac{3}{7} a^{16} + \frac{3}{7} a^{14} + \frac{1}{7} a^{10} - \frac{1}{7} a^{8} + \frac{2}{7} a^{4} + \frac{3}{7} a^{2} - \frac{3}{7}$, $\frac{1}{7} a^{33} - \frac{2}{7} a^{31} + \frac{2}{7} a^{29} + \frac{3}{7} a^{25} + \frac{1}{7} a^{23} - \frac{2}{7} a^{19} - \frac{3}{7} a^{17} + \frac{3}{7} a^{15} + \frac{1}{7} a^{11} - \frac{1}{7} a^{9} + \frac{2}{7} a^{5} + \frac{3}{7} a^{3} - \frac{3}{7} a$, $\frac{1}{7} a^{34} - \frac{2}{7} a^{30} - \frac{3}{7} a^{28} + \frac{3}{7} a^{26} + \frac{2}{7} a^{22} - \frac{2}{7} a^{20} - \frac{3}{7} a^{16} - \frac{1}{7} a^{14} + \frac{1}{7} a^{12} + \frac{1}{7} a^{10} - \frac{2}{7} a^{8} + \frac{2}{7} a^{6} + \frac{3}{7} a^{2} + \frac{1}{7}$, $\frac{1}{7} a^{35} - \frac{2}{7} a^{31} - \frac{3}{7} a^{29} + \frac{3}{7} a^{27} + \frac{2}{7} a^{23} - \frac{2}{7} a^{21} - \frac{3}{7} a^{17} - \frac{1}{7} a^{15} + \frac{1}{7} a^{13} + \frac{1}{7} a^{11} - \frac{2}{7} a^{9} + \frac{2}{7} a^{7} + \frac{3}{7} a^{3} + \frac{1}{7} a$, $\frac{1}{1057} a^{36} - \frac{6}{151} a^{34} - \frac{3}{1057} a^{32} + \frac{503}{1057} a^{30} + \frac{463}{1057} a^{28} - \frac{2}{151} a^{26} + \frac{160}{1057} a^{24} - \frac{269}{1057} a^{22} + \frac{72}{151} a^{20} + \frac{328}{1057} a^{18} + \frac{457}{1057} a^{16} + \frac{390}{1057} a^{14} - \frac{104}{1057} a^{12} - \frac{465}{1057} a^{10} - \frac{123}{1057} a^{8} - \frac{22}{151} a^{6} + \frac{351}{1057} a^{4} + \frac{516}{1057} a^{2} - \frac{228}{1057}$, $\frac{1}{1057} a^{37} - \frac{6}{151} a^{35} - \frac{3}{1057} a^{33} + \frac{503}{1057} a^{31} + \frac{463}{1057} a^{29} - \frac{2}{151} a^{27} + \frac{160}{1057} a^{25} - \frac{269}{1057} a^{23} + \frac{72}{151} a^{21} + \frac{328}{1057} a^{19} + \frac{457}{1057} a^{17} + \frac{390}{1057} a^{15} - \frac{104}{1057} a^{13} - \frac{465}{1057} a^{11} - \frac{123}{1057} a^{9} - \frac{22}{151} a^{7} + \frac{351}{1057} a^{5} + \frac{516}{1057} a^{3} - \frac{228}{1057} a$, $\frac{1}{1882407816972786612108716536103085223451} a^{38} - \frac{15731247118461406791933737135185259}{268915402424683801729816648014726460493} a^{36} - \frac{4744286105323148867704494207657566058}{1882407816972786612108716536103085223451} a^{34} - \frac{101421087075471908145491953758925469246}{1882407816972786612108716536103085223451} a^{32} + \frac{36147641761880874056837769217242006963}{268915402424683801729816648014726460493} a^{30} + \frac{90711810938737594109164176240933737862}{1882407816972786612108716536103085223451} a^{28} - \frac{102427968760729823643591009972806236380}{268915402424683801729816648014726460493} a^{26} - \frac{806999825103606531467228369605338526322}{1882407816972786612108716536103085223451} a^{24} - \frac{155390767313901812670149206493216028115}{1882407816972786612108716536103085223451} a^{22} + \frac{747793050586371829378203965736102343313}{1882407816972786612108716536103085223451} a^{20} + \frac{839644775900602388959531304026463029302}{1882407816972786612108716536103085223451} a^{18} + \frac{121873705886970916263232665104303631433}{268915402424683801729816648014726460493} a^{16} - \frac{8253407650906769059279587305643488853}{268915402424683801729816648014726460493} a^{14} - \frac{71286438178095507523238246865516142017}{1882407816972786612108716536103085223451} a^{12} + \frac{24763010676266317482329328997879215813}{268915402424683801729816648014726460493} a^{10} - \frac{741789267759613724500456389127965086672}{1882407816972786612108716536103085223451} a^{8} + \frac{16638928978525817324564426604035131257}{1882407816972786612108716536103085223451} a^{6} - \frac{200473924963798758801207648123172309225}{1882407816972786612108716536103085223451} a^{4} - \frac{326728996832349125884585999598655670182}{1882407816972786612108716536103085223451} a^{2} + \frac{542588334364143556238487559651239261370}{1882407816972786612108716536103085223451}$, $\frac{1}{1882407816972786612108716536103085223451} a^{39} - \frac{15731247118461406791933737135185259}{268915402424683801729816648014726460493} a^{37} - \frac{4744286105323148867704494207657566058}{1882407816972786612108716536103085223451} a^{35} - \frac{101421087075471908145491953758925469246}{1882407816972786612108716536103085223451} a^{33} + \frac{36147641761880874056837769217242006963}{268915402424683801729816648014726460493} a^{31} + \frac{90711810938737594109164176240933737862}{1882407816972786612108716536103085223451} a^{29} - \frac{102427968760729823643591009972806236380}{268915402424683801729816648014726460493} a^{27} - \frac{806999825103606531467228369605338526322}{1882407816972786612108716536103085223451} a^{25} - \frac{155390767313901812670149206493216028115}{1882407816972786612108716536103085223451} a^{23} + \frac{747793050586371829378203965736102343313}{1882407816972786612108716536103085223451} a^{21} + \frac{839644775900602388959531304026463029302}{1882407816972786612108716536103085223451} a^{19} + \frac{121873705886970916263232665104303631433}{268915402424683801729816648014726460493} a^{17} - \frac{8253407650906769059279587305643488853}{268915402424683801729816648014726460493} a^{15} - \frac{71286438178095507523238246865516142017}{1882407816972786612108716536103085223451} a^{13} + \frac{24763010676266317482329328997879215813}{268915402424683801729816648014726460493} a^{11} - \frac{741789267759613724500456389127965086672}{1882407816972786612108716536103085223451} a^{9} + \frac{16638928978525817324564426604035131257}{1882407816972786612108716536103085223451} a^{7} - \frac{200473924963798758801207648123172309225}{1882407816972786612108716536103085223451} a^{5} - \frac{326728996832349125884585999598655670182}{1882407816972786612108716536103085223451} a^{3} + \frac{542588334364143556238487559651239261370}{1882407816972786612108716536103085223451} a$
Class group and class number
$C_{11}\times C_{55}$, which has order $605$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{60982801767390441554071367337047629250}{1882407816972786612108716536103085223451} a^{39} - \frac{1213794782372652920631719432053599379000}{1882407816972786612108716536103085223451} a^{37} + \frac{13908790224576361797650905026009808260985}{1882407816972786612108716536103085223451} a^{35} - \frac{108420547835145750095820544489227150733350}{1882407816972786612108716536103085223451} a^{33} + \frac{637388685179548060392678477680689857748000}{1882407816972786612108716536103085223451} a^{31} - \frac{2926049530117748539545923781139053315403625}{1882407816972786612108716536103085223451} a^{29} + \frac{1542339861080187372716350765320337278678875}{268915402424683801729816648014726460493} a^{27} - \frac{32303772672325487853334158331446881664055027}{1882407816972786612108716536103085223451} a^{25} + \frac{79063454558652641543575994694241142847422025}{1882407816972786612108716536103085223451} a^{23} - \frac{157793697230969287360314156678657208042636100}{1882407816972786612108716536103085223451} a^{21} + \frac{256394810026294995797732570712351494708372375}{1882407816972786612108716536103085223451} a^{19} - \frac{334490812535455175588602189457092734162481750}{1882407816972786612108716536103085223451} a^{17} + \frac{346486687276069007771254411843705604979062880}{1882407816972786612108716536103085223451} a^{15} - \frac{275642671629382105640711330056786688957004850}{1882407816972786612108716536103085223451} a^{13} + \frac{163845274629375733432108102813684197243671150}{1882407816972786612108716536103085223451} a^{11} - \frac{65896043620177710925924643221862793322828875}{1882407816972786612108716536103085223451} a^{9} + \frac{16546845794841566857231826268588526889049000}{1882407816972786612108716536103085223451} a^{7} - \frac{969383617920261423673130666850022214047330}{1882407816972786612108716536103085223451} a^{5} + \frac{15039422341862280240063950700811829009375}{1882407816972786612108716536103085223451} a^{3} + \frac{14813235805684446519030135164153967765650}{1882407816972786612108716536103085223451} a \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12293887094064384 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||