Normalized defining polynomial
\( x^{40} + 43 x^{38} + 855 x^{36} + 10413 x^{34} + 86696 x^{32} + 521224 x^{30} + 2328570 x^{28} + 7829798 x^{26} + 19840782 x^{24} + 37603690 x^{22} + 52728422 x^{20} + 54866175 x^{18} + 43814026 x^{16} + 21190547 x^{14} - 27594627 x^{12} - 87607421 x^{10} - 71349280 x^{8} - 541649 x^{6} - 85190495 x^{4} - 99217770 x^{2} + 392079601 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{17711} a^{22} + \frac{22}{17711} a^{20} + \frac{209}{17711} a^{18} + \frac{1122}{17711} a^{16} + \frac{3740}{17711} a^{14} + \frac{8008}{17711} a^{12} - \frac{6700}{17711} a^{10} - \frac{8273}{17711} a^{8} + \frac{4719}{17711} a^{6} + \frac{1210}{17711} a^{4} + \frac{121}{17711} a^{2} + \frac{6767}{17711}$, $\frac{1}{17711} a^{23} + \frac{22}{17711} a^{21} + \frac{209}{17711} a^{19} + \frac{1122}{17711} a^{17} + \frac{3740}{17711} a^{15} + \frac{8008}{17711} a^{13} - \frac{6700}{17711} a^{11} - \frac{8273}{17711} a^{9} + \frac{4719}{17711} a^{7} + \frac{1210}{17711} a^{5} + \frac{121}{17711} a^{3} + \frac{6767}{17711} a$, $\frac{1}{17711} a^{24} - \frac{275}{17711} a^{20} - \frac{3476}{17711} a^{18} - \frac{3233}{17711} a^{16} - \frac{3428}{17711} a^{14} - \frac{5766}{17711} a^{12} - \frac{2561}{17711} a^{10} - \frac{8096}{17711} a^{8} + \frac{3658}{17711} a^{6} - \frac{8788}{17711} a^{4} + \frac{4105}{17711} a^{2} - \frac{7186}{17711}$, $\frac{1}{17711} a^{25} - \frac{275}{17711} a^{21} - \frac{3476}{17711} a^{19} - \frac{3233}{17711} a^{17} - \frac{3428}{17711} a^{15} - \frac{5766}{17711} a^{13} - \frac{2561}{17711} a^{11} - \frac{8096}{17711} a^{9} + \frac{3658}{17711} a^{7} - \frac{8788}{17711} a^{5} + \frac{4105}{17711} a^{3} - \frac{7186}{17711} a$, $\frac{1}{17711} a^{26} + \frac{2574}{17711} a^{20} + \frac{1109}{17711} a^{18} + \frac{4035}{17711} a^{16} - \frac{4504}{17711} a^{14} + \frac{3475}{17711} a^{12} - \frac{8652}{17711} a^{10} - \frac{4409}{17711} a^{8} - \frac{3966}{17711} a^{6} + \frac{346}{17711} a^{4} + \frac{8378}{17711} a^{2} + \frac{1270}{17711}$, $\frac{1}{17711} a^{27} + \frac{2574}{17711} a^{21} + \frac{1109}{17711} a^{19} + \frac{4035}{17711} a^{17} - \frac{4504}{17711} a^{15} + \frac{3475}{17711} a^{13} - \frac{8652}{17711} a^{11} - \frac{4409}{17711} a^{9} - \frac{3966}{17711} a^{7} + \frac{346}{17711} a^{5} + \frac{8378}{17711} a^{3} + \frac{1270}{17711} a$, $\frac{1}{17711} a^{28} - \frac{2386}{17711} a^{20} - \frac{2601}{17711} a^{18} - \frac{5639}{17711} a^{16} - \frac{6212}{17711} a^{14} - \frac{5640}{17711} a^{12} + \frac{8588}{17711} a^{10} + \frac{2114}{17711} a^{8} + \frac{3386}{17711} a^{6} - \frac{6737}{17711} a^{4} + \frac{8614}{17711} a^{2} - \frac{8345}{17711}$, $\frac{1}{17711} a^{29} - \frac{2386}{17711} a^{21} - \frac{2601}{17711} a^{19} - \frac{5639}{17711} a^{17} - \frac{6212}{17711} a^{15} - \frac{5640}{17711} a^{13} + \frac{8588}{17711} a^{11} + \frac{2114}{17711} a^{9} + \frac{3386}{17711} a^{7} - \frac{6737}{17711} a^{5} + \frac{8614}{17711} a^{3} - \frac{8345}{17711} a$, $\frac{1}{141688} a^{30} - \frac{1}{70844} a^{28} - \frac{3}{141688} a^{26} - \frac{3}{141688} a^{24} + \frac{1}{70844} a^{22} - \frac{7307}{17711} a^{20} + \frac{22635}{70844} a^{18} - \frac{22749}{70844} a^{16} - \frac{53199}{141688} a^{14} - \frac{48879}{141688} a^{12} + \frac{29721}{141688} a^{10} - \frac{60041}{141688} a^{8} - \frac{7809}{141688} a^{6} + \frac{50001}{141688} a^{4} + \frac{66527}{141688} a^{2} - \frac{11531}{141688}$, $\frac{1}{2805564088} a^{31} + \frac{7579}{1402782044} a^{29} + \frac{48869}{2805564088} a^{27} + \frac{55965}{2805564088} a^{25} - \frac{37151}{1402782044} a^{23} + \frac{107841800}{350695511} a^{21} - \frac{393191741}{1402782044} a^{19} - \frac{695854705}{1402782044} a^{17} + \frac{1110975129}{2805564088} a^{15} - \frac{1158632959}{2805564088} a^{13} + \frac{1087140377}{2805564088} a^{11} + \frac{35920319}{2805564088} a^{9} + \frac{1010725239}{2805564088} a^{7} + \frac{1188618217}{2805564088} a^{5} - \frac{629805481}{2805564088} a^{3} + \frac{196778421}{2805564088} a$, $\frac{1}{27777890035288} a^{32} + \frac{10885907}{27777890035288} a^{30} + \frac{555387715}{27777890035288} a^{28} + \frac{218007291}{13888945017644} a^{26} - \frac{700376269}{27777890035288} a^{24} + \frac{128669313}{13888945017644} a^{22} - \frac{5903096082593}{13888945017644} a^{20} + \frac{1930687521265}{6944472508822} a^{18} + \frac{6011553364295}{27777890035288} a^{16} - \frac{5379285522689}{13888945017644} a^{14} - \frac{257474578073}{13888945017644} a^{12} - \frac{623678022123}{6944472508822} a^{10} + \frac{5594606213197}{13888945017644} a^{8} + \frac{1326921755663}{6944472508822} a^{6} - \frac{2723838241309}{6944472508822} a^{4} + \frac{930020627052}{3472236254411} a^{2} - \frac{389717935}{1402852888}$, $\frac{1}{27777890035288} a^{33} + \frac{1177}{6944472508822} a^{31} + \frac{299922113}{27777890035288} a^{29} + \frac{369489763}{27777890035288} a^{27} + \frac{54998901}{3472236254411} a^{25} - \frac{135244751}{6944472508822} a^{23} + \frac{901193454363}{13888945017644} a^{21} - \frac{4261107307667}{13888945017644} a^{19} + \frac{13415944511253}{27777890035288} a^{17} + \frac{3549837609551}{27777890035288} a^{15} - \frac{879387649297}{27777890035288} a^{13} + \frac{8740088423525}{27777890035288} a^{11} - \frac{8764418428207}{27777890035288} a^{9} + \frac{8009599061195}{27777890035288} a^{7} + \frac{11457783417581}{27777890035288} a^{5} + \frac{1132774817943}{27777890035288} a^{3} + \frac{6815661016011}{13888945017644} a$, $\frac{1}{27777890035288} a^{34} + \frac{21994217}{27777890035288} a^{30} + \frac{122940079}{27777890035288} a^{28} - \frac{17097695}{6944472508822} a^{26} - \frac{181368843}{6944472508822} a^{24} - \frac{224620349}{13888945017644} a^{22} + \frac{197576230489}{13888945017644} a^{20} - \frac{10644401974171}{27777890035288} a^{18} - \frac{10497975510805}{27777890035288} a^{16} + \frac{13469449472963}{27777890035288} a^{14} + \frac{3157602152665}{27777890035288} a^{12} + \frac{4701676189205}{27777890035288} a^{10} + \frac{10739167542679}{27777890035288} a^{8} - \frac{2762034426879}{27777890035288} a^{6} - \frac{7787798546949}{27777890035288} a^{4} + \frac{4160182283849}{13888945017644} a^{2} + \frac{18701160}{175356611}$, $\frac{1}{27777890035288} a^{35} + \frac{512}{3472236254411} a^{31} - \frac{703021143}{27777890035288} a^{29} - \frac{351252449}{27777890035288} a^{27} - \frac{210474857}{27777890035288} a^{25} + \frac{189704979}{6944472508822} a^{23} - \frac{6258709196087}{13888945017644} a^{21} - \frac{12264026069041}{27777890035288} a^{19} - \frac{9042824728923}{27777890035288} a^{17} - \frac{4578748106683}{13888945017644} a^{15} - \frac{89616439243}{3472236254411} a^{13} + \frac{58901462963}{6944472508822} a^{11} + \frac{540935533702}{3472236254411} a^{9} - \frac{4558192524275}{13888945017644} a^{7} - \frac{1769994560463}{13888945017644} a^{5} - \frac{4069492287493}{27777890035288} a^{3} + \frac{8645767620787}{27777890035288} a$, $\frac{1}{27777890035288} a^{36} - \frac{1053821}{6944472508822} a^{30} - \frac{650702087}{27777890035288} a^{28} - \frac{350787861}{13888945017644} a^{26} - \frac{79455797}{27777890035288} a^{24} - \frac{65625206}{3472236254411} a^{22} - \frac{6666789034209}{27777890035288} a^{20} + \frac{13146905031503}{27777890035288} a^{18} - \frac{2235376950559}{6944472508822} a^{16} - \frac{12240758341317}{27777890035288} a^{14} + \frac{1481169115063}{27777890035288} a^{12} - \frac{4114083811485}{27777890035288} a^{10} - \frac{4028578423097}{27777890035288} a^{8} - \frac{11755691944017}{27777890035288} a^{6} + \frac{4467653239039}{13888945017644} a^{4} + \frac{1126629232659}{3472236254411} a^{2} - \frac{617737121}{1402852888}$, $\frac{1}{27777890035288} a^{37} + \frac{1271}{13888945017644} a^{31} + \frac{547200101}{27777890035288} a^{29} - \frac{5090447}{3472236254411} a^{27} + \frac{711535093}{27777890035288} a^{25} - \frac{59596875}{6944472508822} a^{23} - \frac{8719054373601}{27777890035288} a^{21} - \frac{12807194308709}{27777890035288} a^{19} + \frac{1046341624392}{3472236254411} a^{17} - \frac{3856285303387}{27777890035288} a^{15} + \frac{11772851347329}{27777890035288} a^{13} - \frac{12384111784475}{27777890035288} a^{11} + \frac{8095149958045}{27777890035288} a^{9} + \frac{1167989553909}{27777890035288} a^{7} - \frac{17511683022}{39013890499} a^{5} - \frac{1788641097189}{13888945017644} a^{3} + \frac{4678597226977}{27777890035288} a$, $\frac{1}{27777890035288} a^{38} - \frac{69916755}{27777890035288} a^{30} + \frac{252875449}{13888945017644} a^{28} + \frac{43278299}{27777890035288} a^{26} + \frac{94725655}{6944472508822} a^{24} + \frac{319143319}{27777890035288} a^{22} + \frac{11279185459095}{27777890035288} a^{20} + \frac{3428528193155}{6944472508822} a^{18} - \frac{12823836638617}{27777890035288} a^{16} - \frac{5149279078217}{27777890035288} a^{14} + \frac{8212905013435}{27777890035288} a^{12} + \frac{10778688571111}{27777890035288} a^{10} + \frac{300737029783}{27777890035288} a^{8} - \frac{3069323213281}{13888945017644} a^{6} + \frac{330287531253}{3472236254411} a^{4} - \frac{66697872177}{27777890035288} a^{2} + \frac{167069501}{350713222}$, $\frac{1}{27777890035288} a^{39} + \frac{4107}{27777890035288} a^{31} + \frac{64697043}{13888945017644} a^{29} - \frac{532504455}{27777890035288} a^{27} + \frac{173956245}{13888945017644} a^{25} - \frac{407867309}{27777890035288} a^{23} + \frac{7566516399895}{27777890035288} a^{21} - \frac{1221836715758}{3472236254411} a^{19} + \frac{13065705330107}{27777890035288} a^{17} - \frac{4724144177835}{27777890035288} a^{15} + \frac{10533068343497}{27777890035288} a^{13} + \frac{11277494673877}{27777890035288} a^{11} - \frac{10596994085759}{27777890035288} a^{9} - \frac{796636245992}{3472236254411} a^{7} - \frac{2079984612753}{13888945017644} a^{5} + \frac{13817316744497}{27777890035288} a^{3} - \frac{2509532420475}{13888945017644} a$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||