Normalized defining polynomial
\( x^{40} - 37 x^{38} + 627 x^{36} - 6459 x^{34} + 45284 x^{32} - 229240 x^{30} + 867354 x^{28} - 2503946 x^{26} + 5579574 x^{24} - 9643510 x^{22} + 12917486 x^{20} - 13370001 x^{18} + 11066638 x^{16} - 9636845 x^{14} + 13197033 x^{12} - 19221829 x^{10} + 19241108 x^{8} - 7579633 x^{6} + 15501805 x^{4} + 42588510 x^{2} + 98029801 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{17711} a^{22} - \frac{22}{17711} a^{20} + \frac{209}{17711} a^{18} - \frac{1122}{17711} a^{16} + \frac{3740}{17711} a^{14} - \frac{8008}{17711} a^{12} - \frac{6700}{17711} a^{10} + \frac{8273}{17711} a^{8} + \frac{4719}{17711} a^{6} - \frac{1210}{17711} a^{4} + \frac{121}{17711} a^{2} + \frac{6763}{17711}$, $\frac{1}{17711} a^{23} - \frac{22}{17711} a^{21} + \frac{209}{17711} a^{19} - \frac{1122}{17711} a^{17} + \frac{3740}{17711} a^{15} - \frac{8008}{17711} a^{13} - \frac{6700}{17711} a^{11} + \frac{8273}{17711} a^{9} + \frac{4719}{17711} a^{7} - \frac{1210}{17711} a^{5} + \frac{121}{17711} a^{3} + \frac{6763}{17711} a$, $\frac{1}{17711} a^{24} - \frac{275}{17711} a^{20} + \frac{3476}{17711} a^{18} - \frac{3233}{17711} a^{16} + \frac{3428}{17711} a^{14} - \frac{5766}{17711} a^{12} + \frac{2561}{17711} a^{10} - \frac{8096}{17711} a^{8} - \frac{3658}{17711} a^{6} - \frac{8788}{17711} a^{4} - \frac{8286}{17711} a^{2} + \frac{7098}{17711}$, $\frac{1}{17711} a^{25} - \frac{275}{17711} a^{21} + \frac{3476}{17711} a^{19} - \frac{3233}{17711} a^{17} + \frac{3428}{17711} a^{15} - \frac{5766}{17711} a^{13} + \frac{2561}{17711} a^{11} - \frac{8096}{17711} a^{9} - \frac{3658}{17711} a^{7} - \frac{8788}{17711} a^{5} - \frac{8286}{17711} a^{3} + \frac{7098}{17711} a$, $\frac{1}{17711} a^{26} - \frac{2574}{17711} a^{20} + \frac{1109}{17711} a^{18} - \frac{4035}{17711} a^{16} - \frac{4504}{17711} a^{14} - \frac{3475}{17711} a^{12} - \frac{8652}{17711} a^{10} + \frac{4409}{17711} a^{8} - \frac{3966}{17711} a^{6} - \frac{4527}{17711} a^{4} + \frac{4951}{17711} a^{2} + \frac{170}{17711}$, $\frac{1}{17711} a^{27} - \frac{2574}{17711} a^{21} + \frac{1109}{17711} a^{19} - \frac{4035}{17711} a^{17} - \frac{4504}{17711} a^{15} - \frac{3475}{17711} a^{13} - \frac{8652}{17711} a^{11} + \frac{4409}{17711} a^{9} - \frac{3966}{17711} a^{7} - \frac{4527}{17711} a^{5} + \frac{4951}{17711} a^{3} + \frac{170}{17711} a$, $\frac{1}{17711} a^{28} - \frac{2386}{17711} a^{20} + \frac{2601}{17711} a^{18} - \frac{5639}{17711} a^{16} + \frac{6212}{17711} a^{14} - \frac{5640}{17711} a^{12} - \frac{8588}{17711} a^{10} + \frac{2114}{17711} a^{8} - \frac{7567}{17711} a^{6} + \frac{7547}{17711} a^{4} - \frac{7174}{17711} a^{2} - \frac{1951}{17711}$, $\frac{1}{17711} a^{29} - \frac{2386}{17711} a^{21} + \frac{2601}{17711} a^{19} - \frac{5639}{17711} a^{17} + \frac{6212}{17711} a^{15} - \frac{5640}{17711} a^{13} - \frac{8588}{17711} a^{11} + \frac{2114}{17711} a^{9} - \frac{7567}{17711} a^{7} + \frac{7547}{17711} a^{5} - \frac{7174}{17711} a^{3} - \frac{1951}{17711} a$, $\frac{1}{141688} a^{30} + \frac{1}{70844} a^{28} - \frac{3}{141688} a^{26} + \frac{1}{141688} a^{24} + \frac{1}{70844} a^{22} + \frac{2948}{17711} a^{20} + \frac{19159}{70844} a^{18} + \frac{8271}{70844} a^{16} - \frac{60055}{141688} a^{14} + \frac{24989}{141688} a^{12} - \frac{10823}{141688} a^{10} - \frac{51925}{141688} a^{8} - \frac{337}{1592} a^{6} + \frac{27837}{141688} a^{4} - \frac{51577}{141688} a^{2} + \frac{18009}{141688}$, $\frac{1}{1402852888} a^{31} - \frac{7579}{701426444} a^{29} + \frac{37293}{1402852888} a^{27} + \frac{18681}{1402852888} a^{25} - \frac{13883}{701426444} a^{23} - \frac{84499720}{175356611} a^{21} - \frac{329693445}{701426444} a^{19} + \frac{259714203}{701426444} a^{17} + \frac{163554329}{1402852888} a^{15} - \frac{239857355}{1402852888} a^{13} - \frac{402383471}{1402852888} a^{11} - \frac{68392909}{1402852888} a^{9} + \frac{148116815}{1402852888} a^{7} + \frac{40750869}{1402852888} a^{5} + \frac{580258359}{1402852888} a^{3} + \frac{426481593}{1402852888} a$, $\frac{1}{27777890035288} a^{32} + \frac{10885843}{27777890035288} a^{30} - \frac{97764785}{27777890035288} a^{28} + \frac{84885663}{13888945017644} a^{26} - \frac{676652205}{27777890035288} a^{24} - \frac{357394939}{13888945017644} a^{22} - \frac{1624875595217}{13888945017644} a^{20} - \frac{1726970568017}{6944472508822} a^{18} + \frac{197849593599}{27777890035288} a^{16} - \frac{5859039386601}{13888945017644} a^{14} - \frac{1102640942689}{13888945017644} a^{12} + \frac{401807157557}{6944472508822} a^{10} + \frac{5080510856661}{13888945017644} a^{8} - \frac{2260111094679}{6944472508822} a^{6} - \frac{2060039329751}{6944472508822} a^{4} - \frac{887420207224}{3472236254411} a^{2} + \frac{1277038133}{2805564088}$, $\frac{1}{27777890035288} a^{33} - \frac{4707}{27777890035288} a^{31} + \frac{299443275}{27777890035288} a^{29} + \frac{30433831}{3472236254411} a^{27} - \frac{231327715}{27777890035288} a^{25} + \frac{269940343}{13888945017644} a^{23} - \frac{56561598225}{156055561996} a^{21} + \frac{1094882395755}{3472236254411} a^{19} + \frac{6059912278419}{27777890035288} a^{17} + \frac{1318707478758}{3472236254411} a^{15} + \frac{235606658334}{3472236254411} a^{13} - \frac{5050090427009}{13888945017644} a^{11} + \frac{42422721244}{3472236254411} a^{9} + \frac{6394173897529}{13888945017644} a^{7} + \frac{5492188262207}{13888945017644} a^{5} + \frac{706204395347}{13888945017644} a^{3} + \frac{2393535124227}{27777890035288} a$, $\frac{1}{27777890035288} a^{34} - \frac{21965087}{27777890035288} a^{30} - \frac{2773801}{27777890035288} a^{28} - \frac{2528476}{3472236254411} a^{26} - \frac{104713577}{6944472508822} a^{24} - \frac{165612741}{13888945017644} a^{22} + \frac{1539101842905}{13888945017644} a^{20} - \frac{2167319500571}{27777890035288} a^{18} + \frac{3263671426579}{27777890035288} a^{16} + \frac{3085814392991}{27777890035288} a^{14} - \frac{3793737077303}{27777890035288} a^{12} - \frac{18315648879}{27777890035288} a^{10} + \frac{7495768920831}{27777890035288} a^{8} + \frac{6876657377149}{27777890035288} a^{6} + \frac{6305809345659}{27777890035288} a^{4} + \frac{3381316498795}{13888945017644} a^{2} - \frac{34934818}{350695511}$, $\frac{1}{27777890035288} a^{35} - \frac{2889}{13888945017644} a^{31} - \frac{361686727}{27777890035288} a^{29} + \frac{204731353}{27777890035288} a^{27} + \frac{451221433}{27777890035288} a^{25} + \frac{6658792}{3472236254411} a^{23} - \frac{5748985220511}{13888945017644} a^{21} + \frac{13046077537611}{27777890035288} a^{19} + \frac{4670160811809}{27777890035288} a^{17} + \frac{959000497385}{6944472508822} a^{15} + \frac{3373377749461}{13888945017644} a^{13} + \frac{2902069201303}{13888945017644} a^{11} - \frac{5918707128525}{13888945017644} a^{9} + \frac{715675342914}{3472236254411} a^{7} + \frac{927308317169}{6944472508822} a^{5} - \frac{2028718046615}{27777890035288} a^{3} - \frac{10436389119355}{27777890035288} a$, $\frac{1}{27777890035288} a^{36} - \frac{785123}{6944472508822} a^{30} + \frac{335041905}{27777890035288} a^{28} + \frac{276644479}{13888945017644} a^{26} + \frac{568116291}{27777890035288} a^{24} - \frac{15061324}{3472236254411} a^{22} - \frac{11351102519833}{27777890035288} a^{20} - \frac{10155550873393}{27777890035288} a^{18} + \frac{56342843806}{3472236254411} a^{16} + \frac{909960864699}{27777890035288} a^{14} + \frac{7439226340491}{27777890035288} a^{12} - \frac{13690969161453}{27777890035288} a^{10} - \frac{13392189391821}{27777890035288} a^{8} + \frac{796697166519}{27777890035288} a^{6} + \frac{1613576084837}{13888945017644} a^{4} + \frac{384313245964}{3472236254411} a^{2} + \frac{966104139}{2805564088}$, $\frac{1}{27777890035288} a^{37} + \frac{7867}{27777890035288} a^{31} - \frac{335855577}{27777890035288} a^{29} + \frac{335220545}{27777890035288} a^{27} - \frac{108249167}{13888945017644} a^{25} + \frac{146219731}{13888945017644} a^{23} + \frac{9788314868791}{27777890035288} a^{21} - \frac{5234600927919}{27777890035288} a^{19} - \frac{2602799415471}{13888945017644} a^{17} - \frac{5059864044583}{13888945017644} a^{15} + \frac{4101379568903}{13888945017644} a^{13} + \frac{4344473716641}{13888945017644} a^{11} + \frac{712081863892}{3472236254411} a^{9} - \frac{1517882842388}{3472236254411} a^{7} - \frac{7831315319979}{27777890035288} a^{5} - \frac{2206353705903}{27777890035288} a^{3} - \frac{2611800849685}{13888945017644} a$, $\frac{1}{27777890035288} a^{38} + \frac{91036281}{27777890035288} a^{30} + \frac{271928409}{13888945017644} a^{28} - \frac{513006465}{27777890035288} a^{26} + \frac{22225618}{3472236254411} a^{24} + \frac{99843407}{27777890035288} a^{22} + \frac{8762145059903}{27777890035288} a^{20} + \frac{928440267907}{3472236254411} a^{18} + \frac{12692745747287}{27777890035288} a^{16} + \frac{10077539432463}{27777890035288} a^{14} + \frac{11782532028663}{27777890035288} a^{12} + \frac{3448368922087}{27777890035288} a^{10} - \frac{9435131948557}{27777890035288} a^{8} - \frac{889313283893}{13888945017644} a^{6} - \frac{2219360040983}{6944472508822} a^{4} + \frac{10865348042659}{27777890035288} a^{2} + \frac{139955966}{350695511}$, $\frac{1}{27777890035288} a^{39} - \frac{8717}{27777890035288} a^{31} + \frac{207020731}{13888945017644} a^{29} - \frac{273295559}{27777890035288} a^{27} - \frac{245397811}{13888945017644} a^{25} - \frac{201686221}{27777890035288} a^{23} + \frac{1297712825015}{27777890035288} a^{21} - \frac{3238513704933}{6944472508822} a^{19} + \frac{4535574814563}{27777890035288} a^{17} + \frac{13307786695625}{27777890035288} a^{15} - \frac{412434152015}{27777890035288} a^{13} - \frac{10486000896423}{27777890035288} a^{11} + \frac{6897061350033}{27777890035288} a^{9} + \frac{1697192846107}{6944472508822} a^{7} + \frac{131283018415}{13888945017644} a^{5} + \frac{1106791392353}{27777890035288} a^{3} + \frac{2289884056065}{13888945017644} a$
Class group and class number
$C_{22}\times C_{88}$, which has order $1936$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{7881196} a^{33} - \frac{33}{7881196} a^{31} + \frac{495}{7881196} a^{29} - \frac{2233}{3940598} a^{27} + \frac{27027}{7881196} a^{25} - \frac{57915}{3940598} a^{23} + \frac{180895}{3940598} a^{21} - \frac{208725}{1970299} a^{19} + \frac{1427679}{7881196} a^{17} - \frac{898909}{3940598} a^{15} + \frac{820743}{3940598} a^{13} - \frac{264537}{1970299} a^{11} + \frac{230945}{3940598} a^{9} - \frac{31977}{1970299} a^{7} + \frac{5049}{1970299} a^{5} - \frac{374}{1970299} a^{3} + \frac{33}{7881196} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 100039126568469490 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||