Normalized defining polynomial
\( x^{40} - x^{38} - 3 x^{36} + 7 x^{34} + 5 x^{32} - 33 x^{30} + 13 x^{28} + 119 x^{26} - 171 x^{24} - 305 x^{22} + 989 x^{20} - 1220 x^{18} - 2736 x^{16} + 7616 x^{14} + 3328 x^{12} - 33792 x^{10} + 20480 x^{8} + 114688 x^{6} - 196608 x^{4} - 262144 x^{2} + 1048576 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{3956} a^{22} - \frac{1}{4} a^{20} + \frac{1}{4} a^{18} - \frac{1}{4} a^{16} + \frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{305}{989}$, $\frac{1}{7912} a^{23} - \frac{1}{8} a^{21} - \frac{3}{8} a^{19} - \frac{1}{8} a^{17} - \frac{3}{8} a^{15} - \frac{1}{8} a^{13} - \frac{3}{8} a^{11} - \frac{1}{8} a^{9} - \frac{3}{8} a^{7} - \frac{1}{8} a^{5} - \frac{3}{8} a^{3} + \frac{342}{989} a$, $\frac{1}{15824} a^{24} - \frac{1}{15824} a^{22} + \frac{1}{16} a^{20} + \frac{3}{16} a^{18} - \frac{7}{16} a^{16} - \frac{5}{16} a^{14} + \frac{1}{16} a^{12} + \frac{3}{16} a^{10} - \frac{7}{16} a^{8} - \frac{5}{16} a^{6} + \frac{1}{16} a^{4} - \frac{305}{3956} a^{2} - \frac{171}{989}$, $\frac{1}{31648} a^{25} - \frac{1}{31648} a^{23} + \frac{1}{32} a^{21} - \frac{13}{32} a^{19} + \frac{9}{32} a^{17} + \frac{11}{32} a^{15} - \frac{15}{32} a^{13} + \frac{3}{32} a^{11} - \frac{7}{32} a^{9} - \frac{5}{32} a^{7} + \frac{1}{32} a^{5} - \frac{305}{7912} a^{3} - \frac{171}{1978} a$, $\frac{1}{63296} a^{26} - \frac{1}{63296} a^{24} - \frac{3}{63296} a^{22} - \frac{13}{64} a^{20} + \frac{9}{64} a^{18} - \frac{21}{64} a^{16} - \frac{15}{64} a^{14} - \frac{29}{64} a^{12} + \frac{25}{64} a^{10} + \frac{27}{64} a^{8} + \frac{1}{64} a^{6} - \frac{305}{15824} a^{4} - \frac{171}{3956} a^{2} + \frac{119}{989}$, $\frac{1}{126592} a^{27} - \frac{1}{126592} a^{25} - \frac{3}{126592} a^{23} - \frac{13}{128} a^{21} + \frac{9}{128} a^{19} + \frac{43}{128} a^{17} + \frac{49}{128} a^{15} + \frac{35}{128} a^{13} + \frac{25}{128} a^{11} - \frac{37}{128} a^{9} - \frac{63}{128} a^{7} + \frac{15519}{31648} a^{5} + \frac{3785}{7912} a^{3} - \frac{435}{989} a$, $\frac{1}{253184} a^{28} - \frac{1}{253184} a^{26} - \frac{3}{253184} a^{24} + \frac{7}{253184} a^{22} + \frac{73}{256} a^{20} - \frac{21}{256} a^{18} - \frac{15}{256} a^{16} + \frac{99}{256} a^{14} - \frac{39}{256} a^{12} - \frac{101}{256} a^{10} + \frac{1}{256} a^{8} - \frac{305}{63296} a^{6} - \frac{171}{15824} a^{4} + \frac{119}{3956} a^{2} + \frac{13}{989}$, $\frac{1}{506368} a^{29} - \frac{1}{506368} a^{27} - \frac{3}{506368} a^{25} + \frac{7}{506368} a^{23} + \frac{73}{512} a^{21} + \frac{235}{512} a^{19} - \frac{15}{512} a^{17} + \frac{99}{512} a^{15} - \frac{39}{512} a^{13} + \frac{155}{512} a^{11} + \frac{1}{512} a^{9} - \frac{305}{126592} a^{7} - \frac{171}{31648} a^{5} + \frac{119}{7912} a^{3} + \frac{13}{1978} a$, $\frac{1}{1012736} a^{30} - \frac{1}{1012736} a^{28} - \frac{3}{1012736} a^{26} + \frac{7}{1012736} a^{24} + \frac{5}{1012736} a^{22} + \frac{235}{1024} a^{20} + \frac{497}{1024} a^{18} - \frac{413}{1024} a^{16} + \frac{473}{1024} a^{14} + \frac{155}{1024} a^{12} + \frac{1}{1024} a^{10} - \frac{305}{253184} a^{8} - \frac{171}{63296} a^{6} + \frac{119}{15824} a^{4} + \frac{13}{3956} a^{2} - \frac{33}{989}$, $\frac{1}{2025472} a^{31} - \frac{1}{2025472} a^{29} - \frac{3}{2025472} a^{27} + \frac{7}{2025472} a^{25} + \frac{5}{2025472} a^{23} + \frac{235}{2048} a^{21} - \frac{527}{2048} a^{19} - \frac{413}{2048} a^{17} + \frac{473}{2048} a^{15} - \frac{869}{2048} a^{13} - \frac{1023}{2048} a^{11} + \frac{252879}{506368} a^{9} + \frac{63125}{126592} a^{7} - \frac{15705}{31648} a^{5} - \frac{3943}{7912} a^{3} + \frac{478}{989} a$, $\frac{1}{4050944} a^{32} - \frac{1}{4050944} a^{30} - \frac{3}{4050944} a^{28} + \frac{7}{4050944} a^{26} + \frac{5}{4050944} a^{24} - \frac{33}{4050944} a^{22} + \frac{497}{4096} a^{20} - \frac{1437}{4096} a^{18} - \frac{551}{4096} a^{16} - \frac{1893}{4096} a^{14} + \frac{1}{4096} a^{12} - \frac{305}{1012736} a^{10} - \frac{171}{253184} a^{8} + \frac{119}{63296} a^{6} + \frac{13}{15824} a^{4} - \frac{33}{3956} a^{2} + \frac{5}{989}$, $\frac{1}{8101888} a^{33} - \frac{1}{8101888} a^{31} - \frac{3}{8101888} a^{29} + \frac{7}{8101888} a^{27} + \frac{5}{8101888} a^{25} - \frac{33}{8101888} a^{23} + \frac{497}{8192} a^{21} + \frac{2659}{8192} a^{19} + \frac{3545}{8192} a^{17} + \frac{2203}{8192} a^{15} + \frac{1}{8192} a^{13} - \frac{305}{2025472} a^{11} - \frac{171}{506368} a^{9} + \frac{119}{126592} a^{7} + \frac{13}{31648} a^{5} - \frac{33}{7912} a^{3} + \frac{5}{1978} a$, $\frac{1}{16203776} a^{34} - \frac{1}{16203776} a^{32} - \frac{3}{16203776} a^{30} + \frac{7}{16203776} a^{28} + \frac{5}{16203776} a^{26} - \frac{33}{16203776} a^{24} + \frac{13}{16203776} a^{22} - \frac{5533}{16384} a^{20} + \frac{3545}{16384} a^{18} + \frac{2203}{16384} a^{16} + \frac{1}{16384} a^{14} - \frac{305}{4050944} a^{12} - \frac{171}{1012736} a^{10} + \frac{119}{253184} a^{8} + \frac{13}{63296} a^{6} - \frac{33}{15824} a^{4} + \frac{5}{3956} a^{2} + \frac{7}{989}$, $\frac{1}{32407552} a^{35} - \frac{1}{32407552} a^{33} - \frac{3}{32407552} a^{31} + \frac{7}{32407552} a^{29} + \frac{5}{32407552} a^{27} - \frac{33}{32407552} a^{25} + \frac{13}{32407552} a^{23} - \frac{5533}{32768} a^{21} + \frac{3545}{32768} a^{19} - \frac{14181}{32768} a^{17} + \frac{1}{32768} a^{15} - \frac{305}{8101888} a^{13} - \frac{171}{2025472} a^{11} + \frac{119}{506368} a^{9} + \frac{13}{126592} a^{7} - \frac{33}{31648} a^{5} + \frac{5}{7912} a^{3} + \frac{7}{1978} a$, $\frac{1}{64815104} a^{36} - \frac{1}{64815104} a^{34} - \frac{3}{64815104} a^{32} + \frac{7}{64815104} a^{30} + \frac{5}{64815104} a^{28} - \frac{33}{64815104} a^{26} + \frac{13}{64815104} a^{24} + \frac{119}{64815104} a^{22} - \frac{29223}{65536} a^{20} - \frac{14181}{65536} a^{18} + \frac{1}{65536} a^{16} - \frac{305}{16203776} a^{14} - \frac{171}{4050944} a^{12} + \frac{119}{1012736} a^{10} + \frac{13}{253184} a^{8} - \frac{33}{63296} a^{6} + \frac{5}{15824} a^{4} + \frac{7}{3956} a^{2} - \frac{3}{989}$, $\frac{1}{129630208} a^{37} - \frac{1}{129630208} a^{35} - \frac{3}{129630208} a^{33} + \frac{7}{129630208} a^{31} + \frac{5}{129630208} a^{29} - \frac{33}{129630208} a^{27} + \frac{13}{129630208} a^{25} + \frac{119}{129630208} a^{23} - \frac{29223}{131072} a^{21} + \frac{51355}{131072} a^{19} - \frac{65535}{131072} a^{17} + \frac{16203471}{32407552} a^{15} + \frac{4050773}{8101888} a^{13} - \frac{1012617}{2025472} a^{11} - \frac{253171}{506368} a^{9} + \frac{63263}{126592} a^{7} - \frac{15819}{31648} a^{5} - \frac{3949}{7912} a^{3} + \frac{493}{989} a$, $\frac{1}{259260416} a^{38} - \frac{1}{259260416} a^{36} - \frac{3}{259260416} a^{34} + \frac{7}{259260416} a^{32} + \frac{5}{259260416} a^{30} - \frac{33}{259260416} a^{28} + \frac{13}{259260416} a^{26} + \frac{119}{259260416} a^{24} - \frac{171}{259260416} a^{22} + \frac{116891}{262144} a^{20} + \frac{1}{262144} a^{18} - \frac{305}{64815104} a^{16} - \frac{171}{16203776} a^{14} + \frac{119}{4050944} a^{12} + \frac{13}{1012736} a^{10} - \frac{33}{253184} a^{8} + \frac{5}{63296} a^{6} + \frac{7}{15824} a^{4} - \frac{3}{3956} a^{2} - \frac{1}{989}$, $\frac{1}{518520832} a^{39} - \frac{1}{518520832} a^{37} - \frac{3}{518520832} a^{35} + \frac{7}{518520832} a^{33} + \frac{5}{518520832} a^{31} - \frac{33}{518520832} a^{29} + \frac{13}{518520832} a^{27} + \frac{119}{518520832} a^{25} - \frac{171}{518520832} a^{23} + \frac{116891}{524288} a^{21} - \frac{262143}{524288} a^{19} + \frac{64814799}{129630208} a^{17} + \frac{16203605}{32407552} a^{15} - \frac{4050825}{8101888} a^{13} - \frac{1012723}{2025472} a^{11} + \frac{253151}{506368} a^{9} - \frac{63291}{126592} a^{7} - \frac{15817}{31648} a^{5} + \frac{3953}{7912} a^{3} + \frac{494}{989} a$
Class group and class number
$C_{22}\times C_{1364}$, which has order $30008$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{33}{4050944} a^{34} + \frac{27403}{4050944} a^{12} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 152923482011716860 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{40}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||