Normalized defining polynomial
\( x^{40} + 33 x^{38} + 660 x^{36} + 8481 x^{34} + 79937 x^{32} + 550209 x^{30} + 2888875 x^{28} + 11395659 x^{26} + 34765478 x^{24} + 81549039 x^{22} + 150504519 x^{20} + 218421093 x^{18} + 252235148 x^{16} + 229629444 x^{14} + 164857660 x^{12} + 90820785 x^{10} + 37846985 x^{8} + 11068596 x^{6} + 2210791 x^{4} + 219615 x^{2} + 14641 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{11} a^{16}$, $\frac{1}{11} a^{17}$, $\frac{1}{11} a^{18}$, $\frac{1}{11} a^{19}$, $\frac{1}{121} a^{20}$, $\frac{1}{121} a^{21}$, $\frac{1}{121} a^{22}$, $\frac{1}{121} a^{23}$, $\frac{1}{121} a^{24}$, $\frac{1}{121} a^{25}$, $\frac{1}{121} a^{26}$, $\frac{1}{121} a^{27}$, $\frac{1}{1331} a^{28} + \frac{1}{121} a^{18} + \frac{1}{11} a^{8}$, $\frac{1}{1331} a^{29} + \frac{1}{121} a^{19} + \frac{1}{11} a^{9}$, $\frac{1}{10648} a^{30} - \frac{1}{484} a^{24} - \frac{3}{88} a^{18} - \frac{1}{22} a^{12} + \frac{3}{8}$, $\frac{1}{10648} a^{31} - \frac{1}{484} a^{25} - \frac{3}{88} a^{19} - \frac{1}{22} a^{13} + \frac{3}{8} a$, $\frac{1}{457864} a^{32} - \frac{21}{457864} a^{30} + \frac{6}{57233} a^{28} - \frac{21}{20812} a^{26} + \frac{37}{20812} a^{24} + \frac{20}{5203} a^{22} - \frac{9}{41624} a^{20} - \frac{1459}{41624} a^{18} + \frac{17}{473} a^{16} + \frac{25}{946} a^{14} - \frac{41}{946} a^{12} - \frac{10}{473} a^{10} - \frac{225}{473} a^{8} + \frac{5}{43} a^{6} + \frac{6}{43} a^{4} + \frac{3}{344} a^{2} - \frac{7}{344}$, $\frac{1}{457864} a^{33} - \frac{21}{457864} a^{31} + \frac{6}{57233} a^{29} - \frac{21}{20812} a^{27} + \frac{37}{20812} a^{25} + \frac{20}{5203} a^{23} - \frac{9}{41624} a^{21} - \frac{1459}{41624} a^{19} + \frac{17}{473} a^{17} + \frac{25}{946} a^{15} - \frac{41}{946} a^{13} - \frac{10}{473} a^{11} - \frac{225}{473} a^{9} + \frac{5}{43} a^{7} + \frac{6}{43} a^{5} + \frac{3}{344} a^{3} - \frac{7}{344} a$, $\frac{1}{457864} a^{34} - \frac{3}{228932} a^{30} - \frac{71}{228932} a^{28} - \frac{15}{5203} a^{26} - \frac{23}{10406} a^{24} - \frac{89}{41624} a^{22} + \frac{9}{5203} a^{20} - \frac{489}{20812} a^{18} - \frac{35}{946} a^{16} - \frac{16}{473} a^{14} + \frac{1}{43} a^{12} - \frac{5}{473} a^{10} - \frac{26}{473} a^{8} - \frac{18}{43} a^{6} - \frac{21}{344} a^{4} + \frac{7}{43} a^{2} - \frac{9}{172}$, $\frac{1}{457864} a^{35} - \frac{3}{228932} a^{31} - \frac{71}{228932} a^{29} - \frac{15}{5203} a^{27} - \frac{23}{10406} a^{25} - \frac{89}{41624} a^{23} + \frac{9}{5203} a^{21} - \frac{489}{20812} a^{19} - \frac{35}{946} a^{17} - \frac{16}{473} a^{15} + \frac{1}{43} a^{13} - \frac{5}{473} a^{11} - \frac{26}{473} a^{9} - \frac{18}{43} a^{7} - \frac{21}{344} a^{5} + \frac{7}{43} a^{3} - \frac{9}{172} a$, $\frac{1}{38985140253928} a^{36} + \frac{39008515}{38985140253928} a^{34} - \frac{42160227}{38985140253928} a^{32} + \frac{1713449873}{38985140253928} a^{30} - \frac{640196767}{1772051829724} a^{28} - \frac{4947923989}{1772051829724} a^{26} - \frac{4550943855}{3544103659448} a^{24} - \frac{11962618643}{3544103659448} a^{22} - \frac{3940171149}{3544103659448} a^{20} - \frac{416356067}{29290112888} a^{18} - \frac{196573309}{80547810442} a^{16} + \frac{1489860369}{80547810442} a^{14} - \frac{867112581}{80547810442} a^{12} - \frac{619678714}{40273905221} a^{10} - \frac{32801445}{85145677} a^{8} - \frac{12361691309}{29290112888} a^{6} + \frac{12662312809}{29290112888} a^{4} + \frac{2968748199}{29290112888} a^{2} - \frac{7586464803}{29290112888}$, $\frac{1}{38985140253928} a^{37} + \frac{39008515}{38985140253928} a^{35} - \frac{42160227}{38985140253928} a^{33} + \frac{1713449873}{38985140253928} a^{31} - \frac{640196767}{1772051829724} a^{29} - \frac{4947923989}{1772051829724} a^{27} - \frac{4550943855}{3544103659448} a^{25} - \frac{11962618643}{3544103659448} a^{23} - \frac{3940171149}{3544103659448} a^{21} - \frac{416356067}{29290112888} a^{19} - \frac{196573309}{80547810442} a^{17} + \frac{1489860369}{80547810442} a^{15} - \frac{867112581}{80547810442} a^{13} - \frac{619678714}{40273905221} a^{11} - \frac{32801445}{85145677} a^{9} - \frac{12361691309}{29290112888} a^{7} + \frac{12662312809}{29290112888} a^{5} + \frac{2968748199}{29290112888} a^{3} - \frac{7586464803}{29290112888} a$, $\frac{1}{50225137859076169279549444873675592} a^{38} + \frac{26007227832222171699}{4565921623552379025413585897606872} a^{36} + \frac{1037789179998922264369501225}{1141480405888094756353396474401718} a^{34} - \frac{2849092955350646949763981955}{4565921623552379025413585897606872} a^{32} + \frac{34512606376921455363129976967}{4565921623552379025413585897606872} a^{30} - \frac{6050626175205130947742611036}{570740202944047378176698237200859} a^{28} + \frac{1421540294076452207301006682751}{415083783959307184128507808873352} a^{26} - \frac{1291182069884252050792599805789}{415083783959307184128507808873352} a^{24} - \frac{44975788726086333522013543311}{103770945989826796032126952218338} a^{22} + \frac{501810393479249864389787046597}{415083783959307184128507808873352} a^{20} + \frac{9261987578301294265923894324043}{415083783959307184128507808873352} a^{18} - \frac{180565787795794426357870798286}{4716861181355763456005770555379} a^{16} + \frac{187666586700107323045401906917}{9433722362711526912011541110758} a^{14} + \frac{203664021150317402114986193893}{9433722362711526912011541110758} a^{12} - \frac{7084855679182093531800512263}{4716861181355763456005770555379} a^{10} - \frac{60066045459650597117751307959}{563207305236509069373823349896} a^{8} + \frac{97944842560173549198492084465}{3430444495531464331640560403912} a^{6} + \frac{300515791868255678410437475179}{857611123882866082910140100978} a^{4} + \frac{1014496620188146734047797663749}{3430444495531464331640560403912} a^{2} - \frac{489354525452158429023745192549}{3430444495531464331640560403912}$, $\frac{1}{50225137859076169279549444873675592} a^{39} + \frac{26007227832222171699}{4565921623552379025413585897606872} a^{37} + \frac{1037789179998922264369501225}{1141480405888094756353396474401718} a^{35} - \frac{2849092955350646949763981955}{4565921623552379025413585897606872} a^{33} + \frac{34512606376921455363129976967}{4565921623552379025413585897606872} a^{31} - \frac{6050626175205130947742611036}{570740202944047378176698237200859} a^{29} + \frac{1421540294076452207301006682751}{415083783959307184128507808873352} a^{27} - \frac{1291182069884252050792599805789}{415083783959307184128507808873352} a^{25} - \frac{44975788726086333522013543311}{103770945989826796032126952218338} a^{23} + \frac{501810393479249864389787046597}{415083783959307184128507808873352} a^{21} + \frac{9261987578301294265923894324043}{415083783959307184128507808873352} a^{19} - \frac{180565787795794426357870798286}{4716861181355763456005770555379} a^{17} + \frac{187666586700107323045401906917}{9433722362711526912011541110758} a^{15} + \frac{203664021150317402114986193893}{9433722362711526912011541110758} a^{13} - \frac{7084855679182093531800512263}{4716861181355763456005770555379} a^{11} - \frac{60066045459650597117751307959}{563207305236509069373823349896} a^{9} + \frac{97944842560173549198492084465}{3430444495531464331640560403912} a^{7} + \frac{300515791868255678410437475179}{857611123882866082910140100978} a^{5} + \frac{1014496620188146734047797663749}{3430444495531464331640560403912} a^{3} - \frac{489354525452158429023745192549}{3430444495531464331640560403912} a$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1234475919464273636438511}{97905515557774659606604037602} a^{38} + \frac{40511375081111345145982927}{97905515557774659606604037602} a^{36} + \frac{1614732687845248081788408567}{195811031115549319213208075204} a^{34} + \frac{20645704017829059376322914827}{195811031115549319213208075204} a^{32} + \frac{9005871720195486649401584643}{9107489819327875312242236056} a^{30} + \frac{60162866500248869263378586711}{8900501414343150873327639782} a^{28} + \frac{156722629934632381134053329620}{4450250707171575436663819891} a^{26} + \frac{2446479118466885322469253009457}{17801002828686301746655279564} a^{24} + \frac{7373325763227460306745043752349}{17801002828686301746655279564} a^{22} + \frac{17023426379753166795770511613201}{17801002828686301746655279564} a^{20} + \frac{5612767115000177019052269620733}{3236545968852054863028232648} a^{18} + \frac{996270769303849762017030052912}{404568246106506857878529081} a^{16} + \frac{1122819535478582251122504571659}{404568246106506857878529081} a^{14} + \frac{1982268403992325877385991413463}{809136492213013715757058162} a^{12} + \frac{686964718049809459686322918749}{404568246106506857878529081} a^{10} + \frac{65554027262848022033025374523}{73557862928455792341550742} a^{8} + \frac{25875592177012809967392614409}{73557862928455792341550742} a^{6} + \frac{13770790092582395198814832745}{147115725856911584683101484} a^{4} + \frac{2702152383350278895911764489}{147115725856911584683101484} a^{2} + \frac{525524317081005827943329531}{294231451713823169366202968} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||