Normalized defining polynomial
\( x^{40} - 2 x^{39} + 11 x^{38} - 28 x^{37} + 116 x^{36} - 338 x^{35} + 1253 x^{34} - 3916 x^{33} + 13783 x^{32} - 44616 x^{31} + 153132 x^{30} + 80036 x^{29} + 541141 x^{28} + 747642 x^{27} + 2779859 x^{26} + 3922868 x^{25} + 17053272 x^{24} + 14844762 x^{23} + 118286465 x^{22} - 156288 x^{21} + 930022655 x^{20} - 929692368 x^{19} + 1048603985 x^{18} - 1164717018 x^{17} + 1302100332 x^{16} - 1438695542 x^{15} + 1625753279 x^{14} - 1740855678 x^{13} + 2050319641 x^{12} - 1841907254 x^{11} + 2483453292 x^{10} + 283155444 x^{9} + 32284483 x^{8} + 3680974 x^{7} + 419693 x^{6} + 47852 x^{5} + 5456 x^{4} + 622 x^{3} + 71 x^{2} + 8 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $\frac{1}{7} a^{30} + \frac{2}{7} a^{29} + \frac{3}{7} a^{28} + \frac{2}{7} a^{27} - \frac{3}{7} a^{26} - \frac{1}{7} a^{24} - \frac{3}{7} a^{23} + \frac{2}{7} a^{22} + \frac{2}{7} a^{21} + \frac{1}{7} a^{20} + \frac{3}{7} a^{19} + \frac{1}{7} a^{18} - \frac{3}{7} a^{17} + \frac{1}{7} a^{16} + \frac{3}{7} a^{15} - \frac{3}{7} a^{14} + \frac{3}{7} a^{13} + \frac{3}{7} a^{12} + \frac{2}{7} a^{11} + \frac{2}{7} a^{10} + \frac{3}{7} a^{9} - \frac{2}{7} a^{8} + \frac{3}{7} a^{7} + \frac{2}{7} a^{6} - \frac{2}{7} a^{5} + \frac{2}{7} a^{4} + \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{1726461333697540211407027} a^{31} + \frac{56879293781690516362613}{1726461333697540211407027} a^{30} + \frac{41639029816673223422141}{1726461333697540211407027} a^{29} + \frac{314876996838487167694017}{1726461333697540211407027} a^{28} + \frac{116753565293262359467856}{1726461333697540211407027} a^{27} + \frac{74343351191005787789985}{246637333385362887343861} a^{26} + \frac{527383651572439393938170}{1726461333697540211407027} a^{25} - \frac{245714236673063900932298}{1726461333697540211407027} a^{24} - \frac{402718532731435740832045}{1726461333697540211407027} a^{23} - \frac{668819504401181610700585}{1726461333697540211407027} a^{22} - \frac{521565597879557143005645}{1726461333697540211407027} a^{21} + \frac{239994066999188864873962}{1726461333697540211407027} a^{20} - \frac{270451707092918815428600}{1726461333697540211407027} a^{19} - \frac{533660214200302911532065}{1726461333697540211407027} a^{18} - \frac{110784721074298034345756}{1726461333697540211407027} a^{17} - \frac{738275779903443066114624}{1726461333697540211407027} a^{16} + \frac{155151173172375837795090}{1726461333697540211407027} a^{15} - \frac{651466358970313867405450}{1726461333697540211407027} a^{14} + \frac{46492079389092527619348}{1726461333697540211407027} a^{13} + \frac{779159161107148064212552}{1726461333697540211407027} a^{12} + \frac{306089523364625633499750}{1726461333697540211407027} a^{11} + \frac{685954074011218636627517}{1726461333697540211407027} a^{10} + \frac{611665220329121637917446}{1726461333697540211407027} a^{9} - \frac{854363587102895698800129}{1726461333697540211407027} a^{8} - \frac{764495346236412029201569}{1726461333697540211407027} a^{7} - \frac{244186728625691366485714}{1726461333697540211407027} a^{6} - \frac{224438547673007219908844}{1726461333697540211407027} a^{5} + \frac{383816146967935185233375}{1726461333697540211407027} a^{4} - \frac{74777943020959389698747}{1726461333697540211407027} a^{3} - \frac{441514071638441528160946}{1726461333697540211407027} a^{2} + \frac{201627598151575607392453}{1726461333697540211407027} a + \frac{100498658883538345640886}{246637333385362887343861}$, $\frac{1}{1726461333697540211407027} a^{32} - \frac{51709123218587637979413}{1726461333697540211407027} a^{30} + \frac{86423379742215211224266}{246637333385362887343861} a^{29} + \frac{154570154776413788411411}{1726461333697540211407027} a^{28} + \frac{59009644671936246516854}{1726461333697540211407027} a^{27} + \frac{96572311683006122594771}{246637333385362887343861} a^{26} - \frac{307347270842728161987390}{1726461333697540211407027} a^{25} + \frac{484860815659211880620899}{1726461333697540211407027} a^{24} + \frac{501425948661345512229767}{1726461333697540211407027} a^{23} - \frac{743610536231076014175758}{1726461333697540211407027} a^{22} + \frac{499917933156899797742053}{1726461333697540211407027} a^{21} + \frac{671936005968515013042321}{1726461333697540211407027} a^{20} + \frac{105183616086990574049638}{1726461333697540211407027} a^{19} - \frac{98094886758068791441989}{1726461333697540211407027} a^{18} + \frac{628661199623671273606878}{1726461333697540211407027} a^{17} - \frac{6856050018410613792267}{246637333385362887343861} a^{16} + \frac{153747720076826179940280}{1726461333697540211407027} a^{15} - \frac{695441408400954089625711}{1726461333697540211407027} a^{14} - \frac{271944477012514418547475}{1726461333697540211407027} a^{13} + \frac{406695873356914368597136}{1726461333697540211407027} a^{12} + \frac{198024595401812493062570}{1726461333697540211407027} a^{11} - \frac{195742988580677539885034}{1726461333697540211407027} a^{10} - \frac{482654065705792274652947}{1726461333697540211407027} a^{9} - \frac{807856178322845711738505}{1726461333697540211407027} a^{8} + \frac{86920962535851251234023}{246637333385362887343861} a^{7} - \frac{178608258642256888342237}{1726461333697540211407027} a^{6} + \frac{362609654361791879303535}{1726461333697540211407027} a^{5} + \frac{247030293716053381027010}{1726461333697540211407027} a^{4} + \frac{6894186211422527694668}{1726461333697540211407027} a^{3} - \frac{384474823966500099650830}{1726461333697540211407027} a^{2} + \frac{704380313082052850669854}{1726461333697540211407027} a - \frac{839038530559199135551130}{1726461333697540211407027}$, $\frac{1}{1726461333697540211407027} a^{33} - \frac{7315986794770423733897}{246637333385362887343861} a^{22} + \frac{560010830121248336221270}{1726461333697540211407027} a^{11} - \frac{73123807354264478075876}{1726461333697540211407027}$, $\frac{1}{1726461333697540211407027} a^{34} - \frac{7315986794770423733897}{246637333385362887343861} a^{23} + \frac{560010830121248336221270}{1726461333697540211407027} a^{12} - \frac{73123807354264478075876}{1726461333697540211407027} a$, $\frac{1}{1726461333697540211407027} a^{35} - \frac{7315986794770423733897}{246637333385362887343861} a^{24} + \frac{560010830121248336221270}{1726461333697540211407027} a^{13} - \frac{73123807354264478075876}{1726461333697540211407027} a^{2}$, $\frac{1}{1726461333697540211407027} a^{36} - \frac{7315986794770423733897}{246637333385362887343861} a^{25} + \frac{560010830121248336221270}{1726461333697540211407027} a^{14} - \frac{73123807354264478075876}{1726461333697540211407027} a^{3}$, $\frac{1}{1726461333697540211407027} a^{37} - \frac{7315986794770423733897}{246637333385362887343861} a^{26} + \frac{560010830121248336221270}{1726461333697540211407027} a^{15} - \frac{73123807354264478075876}{1726461333697540211407027} a^{4}$, $\frac{1}{1726461333697540211407027} a^{38} - \frac{7315986794770423733897}{246637333385362887343861} a^{27} + \frac{560010830121248336221270}{1726461333697540211407027} a^{16} - \frac{73123807354264478075876}{1726461333697540211407027} a^{5}$, $\frac{1}{1726461333697540211407027} a^{39} - \frac{7315986794770423733897}{246637333385362887343861} a^{28} + \frac{560010830121248336221270}{1726461333697540211407027} a^{17} - \frac{73123807354264478075876}{1726461333697540211407027} a^{6}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{83361312013381621096}{246637333385362887343861} a^{39} - \frac{458487216073598916028}{246637333385362887343861} a^{38} + \frac{1167058368187342695344}{246637333385362887343861} a^{37} - \frac{4834956096776134023568}{246637333385362887343861} a^{36} + \frac{14088061730261493965224}{246637333385362887343861} a^{35} - \frac{52225861976383585616644}{246637333385362887343861} a^{34} + \frac{163221448922201214105968}{246637333385362887343861} a^{33} - \frac{574484481740219441783084}{246637333385362887343861} a^{32} + \frac{1859624148394517203409568}{246637333385362887343861} a^{31} - \frac{6382642215616577200836336}{246637333385362887343861} a^{30} + \frac{21023556167134659594917164}{246637333385362887343861} a^{29} - \frac{22555111872116671910755268}{246637333385362887343861} a^{28} - \frac{31162209018154330979727816}{246637333385362887343861} a^{27} - \frac{115866346726103509919152732}{246637333385362887343861} a^{26} - \frac{163507711667655166592811664}{246637333385362887343861} a^{25} - \frac{710791564020532212175513056}{246637333385362887343861} a^{24} - \frac{618739418423195490172149576}{246637333385362887343861} a^{23} - \frac{4930257457912472327707632820}{246637333385362887343861} a^{22} + \frac{6514186365973693398925824}{246637333385362887343861} a^{21} - \frac{38763954361484285389952964940}{246637333385362887343861} a^{20} + \frac{38750187782653803502209497664}{246637333385362887343861} a^{19} - \frac{343865685156301933197305891609}{246637333385362887343861} a^{18} + \frac{48546169372396708909469505864}{246637333385362887343861} a^{17} - \frac{54272396024289898635899901936}{246637333385362887343861} a^{16} + \frac{59965773984461591307774177016}{246637333385362887343861} a^{15} - \frac{67762463173748631187578786892}{246637333385362887343861} a^{14} + \frac{72560006672012503532908091544}{246637333385362887343861} a^{13} - \frac{85458667660282796280774373268}{246637333385362887343861} a^{12} + \frac{76771902650202476483500915192}{246637333385362887343861} a^{11} - \frac{103511962372535867481578924016}{246637333385362887343861} a^{10} - \frac{11802104657785803431438823312}{246637333385362887343861} a^{9} - \frac{1345638430276857359393126684}{246637333385362887343861} a^{8} - \frac{984790941589312332626021935438}{246637333385362887343861} a^{7} - \frac{17493079561416086351321764}{246637333385362887343861} a^{6} - \frac{1994502751232168666342896}{246637333385362887343861} a^{5} - \frac{227409659172505062349888}{246637333385362887343861} a^{4} - \frac{25925368036161684160856}{246637333385362887343861} a^{3} - \frac{2959326576475047548908}{246637333385362887343861} a^{2} - \frac{333445248053526484384}{246637333385362887343861} a - \frac{41680656006690810548}{246637333385362887343861} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |