Normalized defining polynomial
\( x^{40} + 63 x^{38} + 1757 x^{36} + 28656 x^{34} + 304524 x^{32} + 2227290 x^{30} + 11569924 x^{28} + 43529874 x^{26} + 120157564 x^{24} + 245357970 x^{22} + 372028031 x^{20} + 418309584 x^{18} + 346146943 x^{16} + 207509745 x^{14} + 87735123 x^{12} + 25054116 x^{10} + 4509483 x^{8} + 457722 x^{6} + 22030 x^{4} + 360 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{26069} a^{36} + \frac{11948}{26069} a^{34} - \frac{35}{26069} a^{32} - \frac{6503}{26069} a^{30} - \frac{2911}{26069} a^{28} + \frac{7989}{26069} a^{26} + \frac{2896}{26069} a^{24} + \frac{3116}{26069} a^{22} + \frac{4241}{26069} a^{20} - \frac{8462}{26069} a^{18} + \frac{12360}{26069} a^{16} - \frac{5432}{26069} a^{14} - \frac{12196}{26069} a^{12} + \frac{5798}{26069} a^{10} - \frac{9590}{26069} a^{8} + \frac{6994}{26069} a^{6} - \frac{8184}{26069} a^{4} - \frac{6568}{26069} a^{2} - \frac{5606}{26069}$, $\frac{1}{26069} a^{37} + \frac{11948}{26069} a^{35} - \frac{35}{26069} a^{33} - \frac{6503}{26069} a^{31} - \frac{2911}{26069} a^{29} + \frac{7989}{26069} a^{27} + \frac{2896}{26069} a^{25} + \frac{3116}{26069} a^{23} + \frac{4241}{26069} a^{21} - \frac{8462}{26069} a^{19} + \frac{12360}{26069} a^{17} - \frac{5432}{26069} a^{15} - \frac{12196}{26069} a^{13} + \frac{5798}{26069} a^{11} - \frac{9590}{26069} a^{9} + \frac{6994}{26069} a^{7} - \frac{8184}{26069} a^{5} - \frac{6568}{26069} a^{3} - \frac{5606}{26069} a$, $\frac{1}{3352707566614500670696620129140499407} a^{38} - \frac{59978996665568388524850165177905}{3352707566614500670696620129140499407} a^{36} + \frac{1512864769609980147742633781683014018}{3352707566614500670696620129140499407} a^{34} + \frac{1163132690816370739340338748523055105}{3352707566614500670696620129140499407} a^{32} + \frac{1446202989280347352780149272521872682}{3352707566614500670696620129140499407} a^{30} + \frac{774569351830498538920438975100159853}{3352707566614500670696620129140499407} a^{28} - \frac{8004358470421150719461345168768936}{16847776716655782264807136327339193} a^{26} + \frac{152513628075479605641444537111799934}{3352707566614500670696620129140499407} a^{24} - \frac{30017718046238061375628344866769407}{3352707566614500670696620129140499407} a^{22} - \frac{764412130455071002101275076850427050}{3352707566614500670696620129140499407} a^{20} + \frac{808970023271771640072362057745280035}{3352707566614500670696620129140499407} a^{18} - \frac{1409438931657309291387381933716330467}{3352707566614500670696620129140499407} a^{16} + \frac{436224623535146109720443635630316086}{3352707566614500670696620129140499407} a^{14} + \frac{852814672505301561483030658156840141}{3352707566614500670696620129140499407} a^{12} + \frac{673681996912936261237650592683166111}{3352707566614500670696620129140499407} a^{10} - \frac{709526457373791935347587091956106183}{3352707566614500670696620129140499407} a^{8} + \frac{930830649901782369310296093419753232}{3352707566614500670696620129140499407} a^{6} + \frac{1036746290074442474519707789314264150}{3352707566614500670696620129140499407} a^{4} - \frac{1403153261942343471406926078963338278}{3352707566614500670696620129140499407} a^{2} - \frac{1115834755201645245578378770401917148}{3352707566614500670696620129140499407}$, $\frac{1}{3352707566614500670696620129140499407} a^{39} - \frac{59978996665568388524850165177905}{3352707566614500670696620129140499407} a^{37} + \frac{1512864769609980147742633781683014018}{3352707566614500670696620129140499407} a^{35} + \frac{1163132690816370739340338748523055105}{3352707566614500670696620129140499407} a^{33} + \frac{1446202989280347352780149272521872682}{3352707566614500670696620129140499407} a^{31} + \frac{774569351830498538920438975100159853}{3352707566614500670696620129140499407} a^{29} - \frac{8004358470421150719461345168768936}{16847776716655782264807136327339193} a^{27} + \frac{152513628075479605641444537111799934}{3352707566614500670696620129140499407} a^{25} - \frac{30017718046238061375628344866769407}{3352707566614500670696620129140499407} a^{23} - \frac{764412130455071002101275076850427050}{3352707566614500670696620129140499407} a^{21} + \frac{808970023271771640072362057745280035}{3352707566614500670696620129140499407} a^{19} - \frac{1409438931657309291387381933716330467}{3352707566614500670696620129140499407} a^{17} + \frac{436224623535146109720443635630316086}{3352707566614500670696620129140499407} a^{15} + \frac{852814672505301561483030658156840141}{3352707566614500670696620129140499407} a^{13} + \frac{673681996912936261237650592683166111}{3352707566614500670696620129140499407} a^{11} - \frac{709526457373791935347587091956106183}{3352707566614500670696620129140499407} a^{9} + \frac{930830649901782369310296093419753232}{3352707566614500670696620129140499407} a^{7} + \frac{1036746290074442474519707789314264150}{3352707566614500670696620129140499407} a^{5} - \frac{1403153261942343471406926078963338278}{3352707566614500670696620129140499407} a^{3} - \frac{1115834755201645245578378770401917148}{3352707566614500670696620129140499407} a$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{420266113026570167555}{925490360222769284989} a^{39} + \frac{26219033725248837567985}{925490360222769284989} a^{37} + \frac{722428088952141305699075}{925490360222769284989} a^{35} + \frac{11606268314634663311728296}{925490360222769284989} a^{33} + \frac{121031305967670493156765267}{925490360222769284989} a^{31} + \frac{864490508064208024979431375}{925490360222769284989} a^{29} + \frac{4359540862926437222178083159}{925490360222769284989} a^{27} + \frac{15810888177680088822917008047}{925490360222769284989} a^{25} + \frac{41733912706752907935116292195}{925490360222769284989} a^{23} + \frac{80776718775489358050650401290}{925490360222769284989} a^{21} + \frac{114999826327308175808042469355}{925490360222769284989} a^{19} + \frac{120177871233900719454958176104}{925490360222769284989} a^{17} + \frac{91403575107408003252037278372}{925490360222769284989} a^{15} + \frac{49746589358729697894688334436}{925490360222769284989} a^{13} + \frac{18830734669818577692117874967}{925490360222769284989} a^{11} + \frac{4737202792732091628545993460}{925490360222769284989} a^{9} + \frac{736435377146514428680961642}{925490360222769284989} a^{7} + \frac{62724503287815445718553406}{925490360222769284989} a^{5} + \frac{2362165047801810349080004}{925490360222769284989} a^{3} + \frac{23186095649371596206408}{925490360222769284989} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||