Normalized defining polynomial
\( x^{40} - x^{39} - x^{38} + 4 x^{37} - 4 x^{36} - 4 x^{35} + 17 x^{34} - 17 x^{33} - 17 x^{32} + 72 x^{31} - 72 x^{30} + 127 x^{29} + 106 x^{28} - 504 x^{27} + 491 x^{26} + 496 x^{25} - 2088 x^{24} + 2091 x^{23} + 2090 x^{22} - 8856 x^{21} + 8855 x^{20} + 8856 x^{19} + 2090 x^{18} - 2091 x^{17} - 2088 x^{16} - 496 x^{15} + 491 x^{14} + 504 x^{13} + 106 x^{12} - 127 x^{11} - 72 x^{10} - 72 x^{9} - 17 x^{8} + 17 x^{7} + 17 x^{6} + 4 x^{5} - 4 x^{4} - 4 x^{3} - x^{2} + x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{89} a^{22} - \frac{34}{89} a^{11} - \frac{1}{89}$, $\frac{1}{89} a^{23} - \frac{34}{89} a^{12} - \frac{1}{89} a$, $\frac{1}{89} a^{24} - \frac{34}{89} a^{13} - \frac{1}{89} a^{2}$, $\frac{1}{89} a^{25} - \frac{34}{89} a^{14} - \frac{1}{89} a^{3}$, $\frac{1}{89} a^{26} - \frac{34}{89} a^{15} - \frac{1}{89} a^{4}$, $\frac{1}{89} a^{27} - \frac{34}{89} a^{16} - \frac{1}{89} a^{5}$, $\frac{1}{89} a^{28} - \frac{34}{89} a^{17} - \frac{1}{89} a^{6}$, $\frac{1}{89} a^{29} - \frac{34}{89} a^{18} - \frac{1}{89} a^{7}$, $\frac{1}{178} a^{30} - \frac{1}{178} a^{27} - \frac{1}{178} a^{24} - \frac{1}{2} a^{21} - \frac{17}{89} a^{19} - \frac{1}{2} a^{18} + \frac{17}{89} a^{16} - \frac{1}{2} a^{15} + \frac{17}{89} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} + \frac{44}{89} a^{8} - \frac{1}{2} a^{6} - \frac{44}{89} a^{5} - \frac{1}{2} a^{3} - \frac{44}{89} a^{2} - \frac{1}{2}$, $\frac{1}{3524578} a^{31} - \frac{2338}{1762289} a^{30} - \frac{7564}{1762289} a^{29} - \frac{15121}{3524578} a^{28} + \frac{549}{1762289} a^{27} + \frac{9346}{1762289} a^{26} + \frac{18721}{3524578} a^{25} - \frac{142}{1762289} a^{24} - \frac{9782}{1762289} a^{23} - \frac{19441}{3524578} a^{22} + \frac{3782}{19801} a^{21} - \frac{544608}{1762289} a^{20} - \frac{930287}{3524578} a^{19} - \frac{79422}{1762289} a^{18} + \frac{801737}{1762289} a^{17} + \frac{219611}{3524578} a^{16} + \frac{434731}{1762289} a^{15} - \frac{446417}{1762289} a^{14} - \frac{51843}{3524578} a^{13} - \frac{518608}{1762289} a^{12} + \frac{362537}{1762289} a^{11} - \frac{19441}{39602} a^{10} + \frac{3782}{1762289} a^{9} - \frac{45722}{1762289} a^{8} - \frac{1666171}{3524578} a^{7} + \frac{50948}{1762289} a^{6} - \frac{176769}{1762289} a^{5} - \frac{1424981}{3524578} a^{4} + \frac{167972}{1762289} a^{3} - \frac{752798}{1762289} a^{2} - \frac{237735}{3524578} a + \frac{762438}{1762289}$, $\frac{1}{3524578} a^{32} + \frac{1}{3524578} a^{30} + \frac{15125}{3524578} a^{29} - \frac{7564}{1762289} a^{28} - \frac{15121}{3524578} a^{27} - \frac{18703}{3524578} a^{26} + \frac{9346}{1762289} a^{25} + \frac{18721}{3524578} a^{24} + \frac{19517}{3524578} a^{23} - \frac{9782}{1762289} a^{22} + \frac{1089415}{3524578} a^{21} - \frac{12237}{39602} a^{20} - \frac{544608}{1762289} a^{19} - \frac{1603521}{3524578} a^{18} + \frac{1603445}{3524578} a^{17} + \frac{801737}{1762289} a^{16} + \frac{892845}{3524578} a^{15} - \frac{892827}{3524578} a^{14} - \frac{446417}{1762289} a^{13} - \frac{725077}{3524578} a^{12} + \frac{725073}{3524578} a^{11} - \frac{865125}{1762289} a^{10} - \frac{19441}{39602} a^{9} - \frac{1754725}{3524578} a^{8} + \frac{825522}{1762289} a^{7} - \frac{1666171}{3524578} a^{6} - \frac{1660393}{3524578} a^{5} + \frac{714276}{1762289} a^{4} - \frac{1424981}{3524578} a^{3} - \frac{1426345}{3524578} a^{2} + \frac{118446}{1762289} a - \frac{237735}{3524578}$, $\frac{1}{3524578} a^{33} + \frac{1346269}{3524578}$, $\frac{1}{3524578} a^{34} + \frac{1346269}{3524578} a$, $\frac{1}{3524578} a^{35} + \frac{1346269}{3524578} a^{2}$, $\frac{1}{3524578} a^{36} + \frac{1346269}{3524578} a^{3}$, $\frac{1}{3524578} a^{37} + \frac{1346269}{3524578} a^{4}$, $\frac{1}{3524578} a^{38} + \frac{1346269}{3524578} a^{5}$, $\frac{1}{3524578} a^{39} + \frac{1346269}{3524578} a^{6}$
Class group and class number
$C_{22}$, which has order $22$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3}{3524578} a^{37} - \frac{24157817}{3524578} a^{4} \) (order $66$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 138297149643015.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{4}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||