Normalized defining polynomial
\( x^{40} + 60 x^{36} + 1450 x^{32} + 18100 x^{28} + 124375 x^{24} + 462515 x^{20} + 846200 x^{16} + 609125 x^{12} + 139875 x^{8} + 6875 x^{4} + 25 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{5} a^{20}$, $\frac{1}{5} a^{21}$, $\frac{1}{5} a^{22}$, $\frac{1}{5} a^{23}$, $\frac{1}{5} a^{24}$, $\frac{1}{5} a^{25}$, $\frac{1}{5} a^{26}$, $\frac{1}{5} a^{27}$, $\frac{1}{5} a^{28}$, $\frac{1}{5} a^{29}$, $\frac{1}{25} a^{30} - \frac{1}{5} a^{10}$, $\frac{1}{25} a^{31} - \frac{1}{5} a^{11}$, $\frac{1}{26075} a^{32} + \frac{69}{5215} a^{28} - \frac{274}{5215} a^{24} + \frac{334}{5215} a^{20} + \frac{268}{1043} a^{16} + \frac{2264}{5215} a^{12} - \frac{145}{1043} a^{8} + \frac{445}{1043} a^{4} + \frac{361}{1043}$, $\frac{1}{26075} a^{33} + \frac{69}{5215} a^{29} - \frac{274}{5215} a^{25} + \frac{334}{5215} a^{21} + \frac{268}{1043} a^{17} + \frac{2264}{5215} a^{13} - \frac{145}{1043} a^{9} + \frac{445}{1043} a^{5} + \frac{361}{1043} a$, $\frac{1}{26075} a^{34} + \frac{69}{5215} a^{30} - \frac{274}{5215} a^{26} + \frac{334}{5215} a^{22} + \frac{268}{1043} a^{18} + \frac{2264}{5215} a^{14} - \frac{145}{1043} a^{10} + \frac{445}{1043} a^{6} + \frac{361}{1043} a^{2}$, $\frac{1}{26075} a^{35} + \frac{69}{5215} a^{31} - \frac{274}{5215} a^{27} + \frac{334}{5215} a^{23} + \frac{268}{1043} a^{19} + \frac{2264}{5215} a^{15} - \frac{145}{1043} a^{11} + \frac{445}{1043} a^{7} + \frac{361}{1043} a^{3}$, $\frac{1}{175097715821980175} a^{36} + \frac{862771630747}{175097715821980175} a^{32} + \frac{2941707114408821}{35019543164396035} a^{28} - \frac{263750122213856}{35019543164396035} a^{24} + \frac{1635973729726536}{35019543164396035} a^{20} - \frac{10947004026169311}{35019543164396035} a^{16} + \frac{13454956493402128}{35019543164396035} a^{12} - \frac{1966885865585092}{7003908632879207} a^{8} - \frac{3380005680980668}{7003908632879207} a^{4} + \frac{2960908872308735}{7003908632879207}$, $\frac{1}{175097715821980175} a^{37} + \frac{862771630747}{175097715821980175} a^{33} + \frac{2941707114408821}{35019543164396035} a^{29} - \frac{263750122213856}{35019543164396035} a^{25} + \frac{1635973729726536}{35019543164396035} a^{21} - \frac{10947004026169311}{35019543164396035} a^{17} + \frac{13454956493402128}{35019543164396035} a^{13} - \frac{1966885865585092}{7003908632879207} a^{9} - \frac{3380005680980668}{7003908632879207} a^{5} + \frac{2960908872308735}{7003908632879207} a$, $\frac{1}{175097715821980175} a^{38} + \frac{862771630747}{175097715821980175} a^{34} + \frac{700718306285691}{175097715821980175} a^{30} - \frac{263750122213856}{35019543164396035} a^{26} + \frac{1635973729726536}{35019543164396035} a^{22} - \frac{10947004026169311}{35019543164396035} a^{18} + \frac{13454956493402128}{35019543164396035} a^{14} + \frac{4173387937832954}{35019543164396035} a^{10} - \frac{3380005680980668}{7003908632879207} a^{6} + \frac{2960908872308735}{7003908632879207} a^{2}$, $\frac{1}{175097715821980175} a^{39} + \frac{862771630747}{175097715821980175} a^{35} + \frac{700718306285691}{175097715821980175} a^{31} - \frac{263750122213856}{35019543164396035} a^{27} + \frac{1635973729726536}{35019543164396035} a^{23} - \frac{10947004026169311}{35019543164396035} a^{19} + \frac{13454956493402128}{35019543164396035} a^{15} + \frac{4173387937832954}{35019543164396035} a^{11} - \frac{3380005680980668}{7003908632879207} a^{7} + \frac{2960908872308735}{7003908632879207} a^{3}$
Class group and class number
$C_{66110}$, which has order $66110$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{333704774931502}{175097715821980175} a^{38} - \frac{4005018972799788}{35019543164396035} a^{34} - \frac{69148663425264151}{25013959403140025} a^{30} - \frac{241765669003499887}{7003908632879207} a^{26} - \frac{1662227344020705884}{7003908632879207} a^{22} - \frac{4419908901484720599}{5002791880628005} a^{18} - \frac{1621190985026069482}{1000558376125601} a^{14} - \frac{41151113414639059803}{35019543164396035} a^{10} - \frac{277814755719135911}{1000558376125601} a^{6} - \frac{119017667899350380}{7003908632879207} a^{2} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4715770945035671.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{4}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||