Normalized defining polynomial
\( x^{40} - x^{39} + 5 x^{38} - 5 x^{37} + 20 x^{36} - 19 x^{35} + 74 x^{34} - 65 x^{33} + 265 x^{32} - 210 x^{31} + 936 x^{30} - 1475 x^{29} + 4114 x^{28} - 6060 x^{27} + 15680 x^{26} - 21989 x^{25} + 56355 x^{24} - 75531 x^{23} + 197315 x^{22} - 252030 x^{21} + 682811 x^{20} - 826140 x^{19} + 1114445 x^{18} - 1435731 x^{17} + 1906140 x^{16} - 2365144 x^{15} + 3132335 x^{14} - 3532620 x^{13} + 4695244 x^{12} - 3931240 x^{11} + 5449401 x^{10} + 1139235 x^{9} + 238165 x^{8} + 49790 x^{7} + 10409 x^{6} + 2176 x^{5} + 455 x^{4} + 95 x^{3} + 20 x^{2} + 4 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $\frac{1}{2526205995232921} a^{31} + \frac{969862058041036}{2526205995232921} a^{30} + \frac{241303777751570}{2526205995232921} a^{29} + \frac{1111938459179657}{2526205995232921} a^{28} + \frac{1206518888757845}{2526205995232921} a^{27} + \frac{710382005693106}{2526205995232921} a^{26} + \frac{743525622606569}{2526205995232921} a^{25} + \frac{759727505551736}{2526205995232921} a^{24} - \frac{1203027871576723}{2526205995232921} a^{23} - \frac{1072959607181926}{2526205995232921} a^{22} + \frac{1082438515708330}{2526205995232921} a^{21} + \frac{95503815941798}{2526205995232921} a^{20} + \frac{25370031947195}{2526205995232921} a^{19} - \frac{528579085352603}{2526205995232921} a^{18} - \frac{70364038799755}{2526205995232921} a^{17} + \frac{488230004469246}{2526205995232921} a^{16} - \frac{383166537792952}{2526205995232921} a^{15} + \frac{57003490590598}{2526205995232921} a^{14} + \frac{433614414914333}{2526205995232921} a^{13} + \frac{299709387039926}{2526205995232921} a^{12} - \frac{480277222460171}{2526205995232921} a^{11} + \frac{830362944453688}{2526205995232921} a^{10} - \frac{14059251761729}{2526205995232921} a^{9} - \frac{484226564561075}{2526205995232921} a^{8} + \frac{126960133769841}{2526205995232921} a^{7} - \frac{424260348281824}{2526205995232921} a^{6} - \frac{990746123121383}{2526205995232921} a^{5} + \frac{285771829634526}{2526205995232921} a^{4} - \frac{1020345858551353}{2526205995232921} a^{3} + \frac{1150915028118670}{2526205995232921} a^{2} - \frac{572259025431674}{2526205995232921} a + \frac{808763874066416}{2526205995232921}$, $\frac{1}{2526205995232921} a^{32} + \frac{1235679720585025}{2526205995232921} a^{30} - \frac{613072852992611}{2526205995232921} a^{29} + \frac{503379744866868}{2526205995232921} a^{28} - \frac{539158269730133}{2526205995232921} a^{27} - \frac{1135293883357864}{2526205995232921} a^{26} - \frac{920953358335506}{2526205995232921} a^{25} - \frac{1227823008417508}{2526205995232921} a^{24} + \frac{1120610297072924}{2526205995232921} a^{23} - \frac{1001803895028353}{2526205995232921} a^{22} - \frac{95503815942622}{2526205995232921} a^{21} + \frac{209142208610269}{2526205995232921} a^{20} + \frac{639739986408395}{2526205995232921} a^{19} - \frac{693236095240533}{2526205995232921} a^{18} - \frac{868143299208031}{2526205995232921} a^{17} + \frac{445016655269210}{2526205995232921} a^{16} + \frac{248343766226902}{2526205995232921} a^{15} - \frac{1247614246741653}{2526205995232921} a^{14} - \frac{163212758531710}{2526205995232921} a^{13} + \frac{773526171669338}{2526205995232921} a^{12} + \frac{913440026709071}{2526205995232921} a^{11} - \frac{304794668595476}{2526205995232921} a^{10} - \frac{916762311003590}{2526205995232921} a^{9} - \frac{1098690672453044}{2526205995232921} a^{8} + \frac{23573903759522}{2526205995232921} a^{7} - \frac{201973183291819}{2526205995232921} a^{6} - \frac{655525585245758}{2526205995232921} a^{5} + \frac{1040619139569614}{2526205995232921} a^{4} + \frac{558223872986398}{2526205995232921} a^{3} + \frac{1184123527600845}{2526205995232921} a^{2} + \frac{814362117403119}{2526205995232921} a + \frac{61996354910397}{2526205995232921}$, $\frac{1}{2526205995232921} a^{33} + \frac{936795771304776}{2526205995232921} a^{22} - \frac{554016545945649}{2526205995232921} a^{11} + \frac{204895633579702}{2526205995232921}$, $\frac{1}{2526205995232921} a^{34} + \frac{936795771304776}{2526205995232921} a^{23} - \frac{554016545945649}{2526205995232921} a^{12} + \frac{204895633579702}{2526205995232921} a$, $\frac{1}{2526205995232921} a^{35} + \frac{936795771304776}{2526205995232921} a^{24} - \frac{554016545945649}{2526205995232921} a^{13} + \frac{204895633579702}{2526205995232921} a^{2}$, $\frac{1}{2526205995232921} a^{36} + \frac{936795771304776}{2526205995232921} a^{25} - \frac{554016545945649}{2526205995232921} a^{14} + \frac{204895633579702}{2526205995232921} a^{3}$, $\frac{1}{2526205995232921} a^{37} + \frac{936795771304776}{2526205995232921} a^{26} - \frac{554016545945649}{2526205995232921} a^{15} + \frac{204895633579702}{2526205995232921} a^{4}$, $\frac{1}{2526205995232921} a^{38} + \frac{936795771304776}{2526205995232921} a^{27} - \frac{554016545945649}{2526205995232921} a^{16} + \frac{204895633579702}{2526205995232921} a^{5}$, $\frac{1}{2526205995232921} a^{39} + \frac{936795771304776}{2526205995232921} a^{28} - \frac{554016545945649}{2526205995232921} a^{17} + \frac{204895633579702}{2526205995232921} a^{6}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1008753747971}{2526205995232921} a^{39} - \frac{831212771199384}{2526205995232921} a^{28} - \frac{1248337057599278259}{2526205995232921} a^{17} - \frac{30260868834152543254}{2526205995232921} a^{6} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20^{2}$ | R | R | $20^{2}$ | R | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | $20^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||