Normalized defining polynomial
\( x^{4} - x^{3} - 49x^{2} + 49x + 451 \)
Invariants
| Degree: | $4$ |
| |
| Signature: | $[4, 0]$ |
| |
| Discriminant: |
\(190125\)
\(\medspace = 3^{2}\cdot 5^{3}\cdot 13^{2}\)
|
| |
| Root discriminant: | \(20.88\) |
| |
| Galois root discriminant: | $3^{1/2}5^{3/4}13^{1/2}\approx 20.88140933013045$ | ||
| Ramified primes: |
\(3\), \(5\), \(13\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_4$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(195=3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{195}(1,·)$, $\chi_{195}(77,·)$, $\chi_{195}(38,·)$, $\chi_{195}(79,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{71}a^{3}+\frac{9}{71}a^{2}-\frac{30}{71}a+\frac{33}{71}$
| Monogenic: | No | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{71}a^{3}+\frac{9}{71}a^{2}-\frac{30}{71}a-\frac{251}{71}$, $\frac{17}{71}a^{3}+\frac{82}{71}a^{2}-\frac{368}{71}a-\frac{1356}{71}$, $\frac{25}{71}a^{3}+\frac{83}{71}a^{2}-\frac{821}{71}a-\frac{2441}{71}$
|
| |
| Regulator: | \( 12.0903797544 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{0}\cdot 12.0903797544 \cdot 2}{2\cdot\sqrt{190125}}\cr\approx \mathstrut & 0.443649821614 \end{aligned}\]
Galois group
| A cyclic group of order 4 |
| The 4 conjugacy class representatives for $C_4$ |
| Character table for $C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }$ | R | R | ${\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
|
\(5\)
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
|
\(13\)
| 13.2.2.2a1.1 | $x^{4} + 24 x^{3} + 148 x^{2} + 61 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *4 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *4 | 1.195.4t1.b.a | $1$ | $ 3 \cdot 5 \cdot 13 $ | 4.4.190125.1 | $C_4$ (as 4T1) | $0$ | $1$ |
| *4 | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| *4 | 1.195.4t1.b.b | $1$ | $ 3 \cdot 5 \cdot 13 $ | 4.4.190125.1 | $C_4$ (as 4T1) | $0$ | $1$ |