Normalized defining polynomial
\( x^{4} - x^{3} - 2x^{2} - 7x - 16 \)
Invariants
Degree: | $4$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 1]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-56615\) \(\medspace = -\,5\cdot 13^{2}\cdot 67\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(15.43\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}13^{1/2}67^{1/2}\approx 65.99242380758567$ | ||
Ramified primes: | \(5\), \(13\), \(67\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-335}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{5}a^{3}-\frac{2}{5}a+\frac{1}{5}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{5}a^{3}-\frac{2}{5}a+\frac{1}{5}$, $\frac{2}{5}a^{3}-\frac{14}{5}a-\frac{13}{5}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 9.77772225919 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{1}\cdot 9.77772225919 \cdot 2}{2\cdot\sqrt{56615}}\cr\approx \mathstrut & 1.03278946828 \end{aligned}\]
Galois group
A solvable group of order 24 |
The 5 conjugacy class representatives for $S_4$ |
Character table for $S_4$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 24 |
Degree 6 siblings: | 6.2.18966025.1, 6.0.6353618375.1 |
Degree 8 sibling: | 8.0.359710104300625.2 |
Degree 12 siblings: | deg 12, deg 12 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | R | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.4.0.1}{4} }$ | R | ${\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.4.0.1}{4} }$ | ${\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
5.2.1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(13\) | 13.4.2.1 | $x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
\(67\) | $\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
67.2.1.1 | $x^{2} + 134$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.335.2t1.a.a | $1$ | $ 5 \cdot 67 $ | \(\Q(\sqrt{-335}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.335.3t2.a.a | $2$ | $ 5 \cdot 67 $ | 3.1.335.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
3.18966025.6t8.a.a | $3$ | $ 5^{2} \cdot 13^{2} \cdot 67^{2}$ | 4.2.56615.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
* | 3.56615.4t5.a.a | $3$ | $ 5 \cdot 13^{2} \cdot 67 $ | 4.2.56615.1 | $S_4$ (as 4T5) | $1$ | $1$ |