magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-17, -46, -44, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - 2*x^3 - 44*x^2 - 46*x - 17)
gp: K = bnfinit(x^4 - 2*x^3 - 44*x^2 - 46*x - 17, 1)
Normalized defining polynomial
\( x^{4} - 2 x^{3} - 44 x^{2} - 46 x - 17 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $4$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12057136=-\,2^{4}\cdot 7^{3}\cdot 13^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
$C_{4}$, which has order $4$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( 5 a^{3} - 22 a^{2} - 185 a + 269 \), \( a^{3} - \frac{1}{2} a^{2} - 37 a - \frac{91}{2} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 116.909883921 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
| Degree 6 siblings: | 6.2.4388797504.1, 6.0.48228544.4 |
| Degree 8 sibling: | 8.0.145374528522496.10 |
| Degree 12 siblings: | Deg 12, Deg 12 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.5 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| $7$ | 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| $13$ | 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.7_13.2t1.1c1 | $1$ | $ 7 \cdot 13 $ | $x^{2} - x + 23$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.2e2_7_13.3t2.1c1 | $2$ | $ 2^{2} \cdot 7 \cdot 13 $ | $x^{3} + 4 x - 2$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 3.2e4_7e2_13e2.6t8.1c1 | $3$ | $ 2^{4} \cdot 7^{2} \cdot 13^{2}$ | $x^{4} - 2 x^{3} - 44 x^{2} - 46 x - 17$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 3.2e4_7e3_13e3.4t5.1c1 | $3$ | $ 2^{4} \cdot 7^{3} \cdot 13^{3}$ | $x^{4} - 2 x^{3} - 44 x^{2} - 46 x - 17$ | $S_4$ (as 4T5) | $1$ | $1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.