Normalized defining polynomial
\( x^{4} - 2x^{3} + 141x^{2} + 210x + 3563 \)
Invariants
Degree: | $4$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(159462464\)
\(\medspace = 2^{6}\cdot 7^{2}\cdot 50849\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(112.37\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(7\), \(50849\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{50849}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | deg 4$^{2}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{233}a^{3}+\frac{11}{233}a^{2}+\frac{51}{233}a-\frac{59}{233}$
Monogenic: | No | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{52}$, which has order $52$
Unit group
Rank: | $1$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental unit: |
$\frac{4}{233}a^{3}+\frac{44}{233}a^{2}+\frac{204}{233}a+\frac{7919}{233}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 6.80016882823 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{2}\cdot 6.80016882823 \cdot 52}{2\cdot\sqrt{159462464}}\cr\approx \mathstrut & 0.552743373178 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $D_{4}$ |
Character table for $D_{4}$ |
Intermediate fields
\(\Q(\sqrt{14}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 8 |
Degree 4 sibling: | deg 4 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.6.2 | $x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
\(7\)
| 7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(50849\)
| $\Q_{50849}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{50849}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |