# Properties

 Label 4.0.1197.2 Degree $4$ Signature $[0, 2]$ Discriminant $3^{2}\cdot 7\cdot 19$ Root discriminant $5.88$ Ramified primes $3, 7, 19$ Class number $1$ Class group Trivial Galois group $D_{4}$ (as 4T3)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 3, -5, -1, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 5*x^2 + 3*x + 9)

gp: K = bnfinit(x^4 - x^3 - 5*x^2 + 3*x + 9, 1)

## Normalizeddefining polynomial

$$x^{4} - x^{3} - 5 x^{2} + 3 x + 9$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

## Invariants

 Degree: $4$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[0, 2]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$1197=3^{2}\cdot 7\cdot 19$$ magma: Discriminant(Integers(K));  sage: K.disc()  gp: K.disc Root discriminant: $5.88$ magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $3, 7, 19$ magma: PrimeDivisors(Discriminant(Integers(K)));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ $|\Aut(K/\Q)|$: $2$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $1$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$-\frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{2}{3} a$$ (order $6$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental unit: $$\frac{2}{3} a^{3} + \frac{1}{3} a^{2} - \frac{10}{3} a - 4$$ magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: $$3.57713438377$$ magma: Regulator(K);  sage: K.regulator()  gp: K.reg

## Galois group

$D_4$ (as 4T3):

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A solvable group of order 8 The 5 conjugacy class representatives for $D_{4}$ Character table for $D_{4}$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling fields

 Galois closure: 8.0.25344958401.3 Degree 4 sibling: 4.2.53067.1

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ${\href{/LocalNumberField/2.4.0.1}{4} }$ R ${\href{/LocalNumberField/5.4.0.1}{4} }$ R ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }$ R ${\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2} 3.2.1.2x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
$7$$\Q_{7}$$x + 2$$1$$1$$0Trivial[\ ] \Q_{7}$$x + 2$$1$$1$$0Trivial[\ ] 7.2.1.2x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
$19$$\Q_{19}$$x + 4$$1$$1$$0Trivial[\ ] \Q_{19}$$x + 4$$1$$1$$0Trivial[\ ] 19.2.1.1x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$

## Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.3.2t1.1c1$1$ $3$ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
1.7_19.2t1.1c1$1$ $7 \cdot 19$ $x^{2} - x - 33$ $C_2$ (as 2T1) $1$ $1$
1.3_7_19.2t1.1c1$1$ $3 \cdot 7 \cdot 19$ $x^{2} - x + 100$ $C_2$ (as 2T1) $1$ $-1$
* 2.3_7_19.4t3.4c1$2$ $3 \cdot 7 \cdot 19$ $x^{4} - x^{3} - 5 x^{2} + 3 x + 9$ $D_{4}$ (as 4T3) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.