Normalized defining polynomial
\( x^{39} - 78 x^{37} + 2691 x^{35} - 26 x^{34} - 54301 x^{33} + 1573 x^{32} + 714415 x^{31} - 41041 x^{30} - 6470152 x^{29} + 608296 x^{28} + 41530255 x^{27} - 5687020 x^{26} - 191726951 x^{25} + 35251762 x^{24} + 639669732 x^{23} - 148392244 x^{22} - 1537691324 x^{21} + 427950341 x^{20} + 2636840661 x^{19} - 844358905 x^{18} - 3171548939 x^{17} + 1129454313 x^{16} + 2610137920 x^{15} - 1007230666 x^{14} - 1417531106 x^{13} + 581665721 x^{12} + 480801555 x^{11} - 206676184 x^{10} - 93363413 x^{9} + 41256709 x^{8} + 9129731 x^{7} - 3966105 x^{6} - 427921 x^{5} + 161980 x^{4} + 7137 x^{3} - 1833 x^{2} + 78 x - 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $\frac{1}{239} a^{35} - \frac{80}{239} a^{34} - \frac{54}{239} a^{33} + \frac{64}{239} a^{32} - \frac{36}{239} a^{31} - \frac{50}{239} a^{30} + \frac{61}{239} a^{29} + \frac{29}{239} a^{28} + \frac{106}{239} a^{27} + \frac{117}{239} a^{26} - \frac{20}{239} a^{25} + \frac{59}{239} a^{24} + \frac{63}{239} a^{23} + \frac{47}{239} a^{22} + \frac{31}{239} a^{21} - \frac{55}{239} a^{20} + \frac{83}{239} a^{19} - \frac{42}{239} a^{18} + \frac{102}{239} a^{17} + \frac{114}{239} a^{16} - \frac{1}{239} a^{15} + \frac{107}{239} a^{14} + \frac{117}{239} a^{13} + \frac{19}{239} a^{12} + \frac{44}{239} a^{11} - \frac{102}{239} a^{10} - \frac{34}{239} a^{9} - \frac{61}{239} a^{8} + \frac{20}{239} a^{7} + \frac{47}{239} a^{6} - \frac{9}{239} a^{5} + \frac{8}{239} a^{4} + \frac{49}{239} a^{3} + \frac{74}{239} a^{2} - \frac{73}{239} a + \frac{56}{239}$, $\frac{1}{669917} a^{36} + \frac{866}{669917} a^{35} - \frac{135962}{669917} a^{34} - \frac{151400}{669917} a^{33} + \frac{313131}{669917} a^{32} - \frac{232237}{669917} a^{31} + \frac{165471}{669917} a^{30} + \frac{328283}{669917} a^{29} - \frac{300846}{669917} a^{28} + \frac{259089}{669917} a^{27} + \frac{256452}{669917} a^{26} - \frac{63554}{669917} a^{25} + \frac{36518}{669917} a^{24} - \frac{330642}{669917} a^{23} + \frac{37084}{669917} a^{22} - \frac{86405}{669917} a^{21} - \frac{278997}{669917} a^{20} - \frac{17602}{669917} a^{19} - \frac{189961}{669917} a^{18} + \frac{205112}{669917} a^{17} + \frac{35904}{669917} a^{16} + \frac{28558}{669917} a^{15} - \frac{136227}{669917} a^{14} - \frac{222226}{669917} a^{13} + \frac{332}{669917} a^{12} + \frac{154808}{669917} a^{11} - \frac{270040}{669917} a^{10} + \frac{176183}{669917} a^{9} + \frac{203302}{669917} a^{8} - \frac{19990}{669917} a^{7} - \frac{62858}{669917} a^{6} - \frac{144258}{669917} a^{5} - \frac{130047}{669917} a^{4} + \frac{226156}{669917} a^{3} + \frac{72082}{669917} a^{2} - \frac{169382}{669917} a + \frac{119657}{669917}$, $\frac{1}{972049567} a^{37} - \frac{63}{972049567} a^{36} + \frac{665643}{972049567} a^{35} - \frac{126936784}{972049567} a^{34} - \frac{115255696}{972049567} a^{33} - \frac{293516289}{972049567} a^{32} - \frac{448181525}{972049567} a^{31} + \frac{395351837}{972049567} a^{30} - \frac{82028015}{972049567} a^{29} + \frac{101213}{4067153} a^{28} + \frac{413491459}{972049567} a^{27} + \frac{204176921}{972049567} a^{26} + \frac{386701233}{972049567} a^{25} - \frac{230238821}{972049567} a^{24} + \frac{275745433}{972049567} a^{23} - \frac{10633457}{972049567} a^{22} - \frac{199148310}{972049567} a^{21} + \frac{308167051}{972049567} a^{20} - \frac{274587287}{972049567} a^{19} - \frac{297417736}{972049567} a^{18} - \frac{336860577}{972049567} a^{17} + \frac{317250558}{972049567} a^{16} - \frac{282171271}{972049567} a^{15} + \frac{104581377}{972049567} a^{14} - \frac{194492834}{972049567} a^{13} + \frac{203871144}{972049567} a^{12} - \frac{165865982}{972049567} a^{11} - \frac{424597383}{972049567} a^{10} - \frac{224108004}{972049567} a^{9} + \frac{293957232}{972049567} a^{8} - \frac{309785114}{972049567} a^{7} - \frac{125519462}{972049567} a^{6} - \frac{41349516}{972049567} a^{5} + \frac{170064289}{972049567} a^{4} - \frac{102520580}{972049567} a^{3} + \frac{103302855}{972049567} a^{2} - \frac{225728201}{972049567} a - \frac{344788600}{972049567}$, $\frac{1}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{38} - \frac{971052844547018770541642618398936396046536970980225780077505919816576893483611970584361755}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{37} + \frac{393842214476860451957559160825572645066927113614885757854501266463717848982542671373959967306}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{36} - \frac{1626223028682619863780783905994956213007899379201303582270020771743571687594985708794561060832440}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{35} - \frac{475809498300979103032812888916736838894212271328450969295162473310631800598584591045311494107359717}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{34} + \frac{699984700718888682765985611945933269528499716600161976796330050588393348928823321636277873955155806}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{33} + \frac{231441985911380631237887401834245160238117427113171797128045867320412914189758220476466397688398908}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{32} - \frac{274257046520194639324095181152772865995890232670492313678442988252117912561564802172150539540994438}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{31} - \frac{404883784125629500072460622454490245509568415956751029586503900873937659071386115820158848922512765}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{30} - \frac{197386248155985361751897170869667831700045839109484346933681628900732082478756972099676292732628292}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{29} - \frac{278626626717207383670908127398027104260502311970671115173927696028433084479609502370210772486702151}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{28} + \frac{667981236204155202362023955356560302477358077722192347266233259051348301177812022898620169240099817}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{27} + \frac{1028507258094052034126750769722843694189483428208865565834632286799046345867697368864931644928275687}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{26} + \frac{395229060593361683183430550492878236026712879078401199404513490825236965644596515039139996677372819}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{25} + \frac{143113392131111296050771068394548124024833188268645826138609203408664900857872555151712741824726269}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{24} + \frac{715933642673330117289211747190131753483125223671989487514644489232478447191243585521619330539262205}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{23} + \frac{1118459419838989785439543582954618713248412194082368039760946874609277478949605557330670020908534498}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{22} - \frac{740058702720205171399522556157438807956754892222840835669371721774126939763892278219948013519851138}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{21} - \frac{750653854111231863020736652036859668457457605312449025110429137881801077751846649974062142534325774}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{20} + \frac{488811205594439448869542684431748394696012835531133616307661115671141274545092598953878285518492474}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{19} - \frac{874962402158993342651778807354997582515593394229995954091176422133062983242199785362607923846116234}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{18} - \frac{372262157171515309780928212107941157593757506051132975564781040607597388612098442651731827696045988}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{17} + \frac{14469398165464928566795850445022708638941837952458950168968884622634336361236650864597763193179119}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{16} - \frac{1213493993259068598287804260858224611229522243387457619035634071802124294645653500537172842313191158}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{15} + \frac{1006072659622951735673537107038991792906439226519849903141972339089612497180178995936236196307747261}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{14} + \frac{691122824758668047256503435538713987123045713294308166167211251232046807627241459514255528196427463}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{13} - \frac{1033429001624645438404755023798018143346830157435827572660906875222147806498956366136286607653322951}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{12} + \frac{51690442201253059254069564627515827546580934844195180148575809097281300610025984631942047336795201}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{11} + \frac{422486783668111886633446448398778259787423648873419938152346602034843964492188849036749551060734537}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{10} + \frac{1051355588079749177225533592884535020758039632990474723528210215091396453776906973422668208738841515}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{9} - \frac{74192352762506471860655012330120905355262509907424235571631384658980227550817942714653273023436950}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{8} + \frac{193202719157214332043040657366137238354900719988407600260907966007087756739918273711934548885791698}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{7} - \frac{829616175591123835748760264130511745292120567642767969574627467111198476560283004562116815987009242}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{6} - \frac{583142424840379530520551864902375381043883449537803643364197310640718109036592149331166641729525471}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{5} - \frac{1219807779865181837640862570620404420754395286560499508148600679767982280313192386877987800246359264}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{4} + \frac{1151257576414222529434317718968142319931827345448530914973322309781034691074775093560735843831122755}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{3} + \frac{401838266537914076950471362225902156300808929263183132950589933733982623150799268332831857416392545}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a^{2} + \frac{797604595624038181531194517511636678780909491780639542893108694056975906587938640199297168888266157}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779} a + \frac{1098775328186896977127036766520899034735129816587275813068104251765302256718715345286581837807777056}{2463831950877657452333716197413652317132260985717413099466878409150422997441710293154961360842050779}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $38$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80306583605632290000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 39 |
| The 39 conjugacy class representatives for $C_{39}$ |
| Character table for $C_{39}$ is not computed |
Intermediate fields
| 3.3.169.1, 13.13.542800770374370512771595361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $39$ | $39$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{3}$ | $39$ | $39$ | R | $39$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{13}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{13}$ | $39$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{3}$ | $39$ | $39$ | $39$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{3}$ | ${\href{/LocalNumberField/53.13.0.1}{13} }^{3}$ | $39$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||