Properties

Label 39.39.174...249.2
Degree $39$
Signature $[39, 0]$
Discriminant $1.746\times 10^{107}$
Root discriminant \(562.08\)
Ramified primes $3,13$
Class number not computed
Class group not computed
Galois group $C_{39}$ (as 39T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^39 - 468*x^37 - 312*x^36 + 94302*x^35 + 118638*x^34 - 10878699*x^33 - 19307574*x^32 + 805821744*x^31 + 1800372886*x^30 - 40680500211*x^29 - 108237264603*x^28 + 1446005621320*x^27 + 4459027282749*x^26 - 36740305683120*x^25 - 130171431648258*x^24 + 667319579204967*x^23 + 2739095618686947*x^22 - 8508852916909748*x^21 - 41760228787431102*x^20 + 72335202029643423*x^19 + 459027912672556227*x^18 - 350556005056037274*x^17 - 3583579320625784766*x^16 + 223936776371258899*x^15 + 19350977144085682407*x^14 + 8850830449501775865*x^13 - 69386406134656900614*x^12 - 59318124902891828415*x^11 + 155603230401068027877*x^10 + 183666623582194428403*x^9 - 199867410901172997567*x^8 - 299712026978452810761*x^7 + 126091751205245716982*x^6 + 247052928867978365847*x^5 - 26149175806607388015*x^4 - 89715453239778791906*x^3 - 3866411569558451472*x^2 + 10712801222330860887*x + 1727305433480995147)
 
Copy content gp:K = bnfinit(y^39 - 468*y^37 - 312*y^36 + 94302*y^35 + 118638*y^34 - 10878699*y^33 - 19307574*y^32 + 805821744*y^31 + 1800372886*y^30 - 40680500211*y^29 - 108237264603*y^28 + 1446005621320*y^27 + 4459027282749*y^26 - 36740305683120*y^25 - 130171431648258*y^24 + 667319579204967*y^23 + 2739095618686947*y^22 - 8508852916909748*y^21 - 41760228787431102*y^20 + 72335202029643423*y^19 + 459027912672556227*y^18 - 350556005056037274*y^17 - 3583579320625784766*y^16 + 223936776371258899*y^15 + 19350977144085682407*y^14 + 8850830449501775865*y^13 - 69386406134656900614*y^12 - 59318124902891828415*y^11 + 155603230401068027877*y^10 + 183666623582194428403*y^9 - 199867410901172997567*y^8 - 299712026978452810761*y^7 + 126091751205245716982*y^6 + 247052928867978365847*y^5 - 26149175806607388015*y^4 - 89715453239778791906*y^3 - 3866411569558451472*y^2 + 10712801222330860887*y + 1727305433480995147, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^39 - 468*x^37 - 312*x^36 + 94302*x^35 + 118638*x^34 - 10878699*x^33 - 19307574*x^32 + 805821744*x^31 + 1800372886*x^30 - 40680500211*x^29 - 108237264603*x^28 + 1446005621320*x^27 + 4459027282749*x^26 - 36740305683120*x^25 - 130171431648258*x^24 + 667319579204967*x^23 + 2739095618686947*x^22 - 8508852916909748*x^21 - 41760228787431102*x^20 + 72335202029643423*x^19 + 459027912672556227*x^18 - 350556005056037274*x^17 - 3583579320625784766*x^16 + 223936776371258899*x^15 + 19350977144085682407*x^14 + 8850830449501775865*x^13 - 69386406134656900614*x^12 - 59318124902891828415*x^11 + 155603230401068027877*x^10 + 183666623582194428403*x^9 - 199867410901172997567*x^8 - 299712026978452810761*x^7 + 126091751205245716982*x^6 + 247052928867978365847*x^5 - 26149175806607388015*x^4 - 89715453239778791906*x^3 - 3866411569558451472*x^2 + 10712801222330860887*x + 1727305433480995147);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^39 - 468*x^37 - 312*x^36 + 94302*x^35 + 118638*x^34 - 10878699*x^33 - 19307574*x^32 + 805821744*x^31 + 1800372886*x^30 - 40680500211*x^29 - 108237264603*x^28 + 1446005621320*x^27 + 4459027282749*x^26 - 36740305683120*x^25 - 130171431648258*x^24 + 667319579204967*x^23 + 2739095618686947*x^22 - 8508852916909748*x^21 - 41760228787431102*x^20 + 72335202029643423*x^19 + 459027912672556227*x^18 - 350556005056037274*x^17 - 3583579320625784766*x^16 + 223936776371258899*x^15 + 19350977144085682407*x^14 + 8850830449501775865*x^13 - 69386406134656900614*x^12 - 59318124902891828415*x^11 + 155603230401068027877*x^10 + 183666623582194428403*x^9 - 199867410901172997567*x^8 - 299712026978452810761*x^7 + 126091751205245716982*x^6 + 247052928867978365847*x^5 - 26149175806607388015*x^4 - 89715453239778791906*x^3 - 3866411569558451472*x^2 + 10712801222330860887*x + 1727305433480995147)
 

\( x^{39} - 468 x^{37} - 312 x^{36} + 94302 x^{35} + 118638 x^{34} - 10878699 x^{33} + \cdots + 17\!\cdots\!47 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $39$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[39, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(174\!\cdots\!249\) \(\medspace = 3^{52}\cdot 13^{74}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(562.08\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $3^{4/3}13^{74/39}\approx 562.0795404019609$
Ramified primes:   \(3\), \(13\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_{39}$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1521=3^{2}\cdot 13^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{1521}(256,·)$, $\chi_{1521}(1,·)$, $\chi_{1521}(133,·)$, $\chi_{1521}(1288,·)$, $\chi_{1521}(139,·)$, $\chi_{1521}(1420,·)$, $\chi_{1521}(16,·)$, $\chi_{1521}(1426,·)$, $\chi_{1521}(1171,·)$, $\chi_{1521}(22,·)$, $\chi_{1521}(1303,·)$, $\chi_{1521}(1309,·)$, $\chi_{1521}(1054,·)$, $\chi_{1521}(1186,·)$, $\chi_{1521}(1192,·)$, $\chi_{1521}(937,·)$, $\chi_{1521}(1069,·)$, $\chi_{1521}(1075,·)$, $\chi_{1521}(820,·)$, $\chi_{1521}(952,·)$, $\chi_{1521}(958,·)$, $\chi_{1521}(703,·)$, $\chi_{1521}(835,·)$, $\chi_{1521}(841,·)$, $\chi_{1521}(586,·)$, $\chi_{1521}(718,·)$, $\chi_{1521}(724,·)$, $\chi_{1521}(469,·)$, $\chi_{1521}(601,·)$, $\chi_{1521}(607,·)$, $\chi_{1521}(352,·)$, $\chi_{1521}(484,·)$, $\chi_{1521}(490,·)$, $\chi_{1521}(235,·)$, $\chi_{1521}(367,·)$, $\chi_{1521}(373,·)$, $\chi_{1521}(118,·)$, $\chi_{1521}(250,·)$, $\chi_{1521}(1405,·)$$\rbrace$
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{19}a^{36}-\frac{1}{19}a^{34}+\frac{3}{19}a^{33}-\frac{6}{19}a^{32}+\frac{5}{19}a^{31}+\frac{3}{19}a^{30}+\frac{6}{19}a^{29}+\frac{7}{19}a^{28}-\frac{2}{19}a^{27}+\frac{1}{19}a^{26}-\frac{2}{19}a^{25}+\frac{5}{19}a^{24}-\frac{2}{19}a^{23}+\frac{3}{19}a^{22}+\frac{9}{19}a^{21}+\frac{9}{19}a^{20}-\frac{1}{19}a^{19}-\frac{1}{19}a^{18}+\frac{3}{19}a^{17}+\frac{2}{19}a^{16}-\frac{9}{19}a^{15}-\frac{5}{19}a^{14}-\frac{9}{19}a^{13}-\frac{3}{19}a^{12}-\frac{8}{19}a^{10}+\frac{1}{19}a^{9}-\frac{9}{19}a^{8}+\frac{4}{19}a^{7}+\frac{3}{19}a^{6}-\frac{3}{19}a^{5}+\frac{2}{19}a^{4}-\frac{8}{19}a^{3}-\frac{2}{19}a^{2}+\frac{2}{19}a+\frac{9}{19}$, $\frac{1}{19}a^{37}-\frac{1}{19}a^{35}+\frac{3}{19}a^{34}-\frac{6}{19}a^{33}+\frac{5}{19}a^{32}+\frac{3}{19}a^{31}+\frac{6}{19}a^{30}+\frac{7}{19}a^{29}-\frac{2}{19}a^{28}+\frac{1}{19}a^{27}-\frac{2}{19}a^{26}+\frac{5}{19}a^{25}-\frac{2}{19}a^{24}+\frac{3}{19}a^{23}+\frac{9}{19}a^{22}+\frac{9}{19}a^{21}-\frac{1}{19}a^{20}-\frac{1}{19}a^{19}+\frac{3}{19}a^{18}+\frac{2}{19}a^{17}-\frac{9}{19}a^{16}-\frac{5}{19}a^{15}-\frac{9}{19}a^{14}-\frac{3}{19}a^{13}-\frac{8}{19}a^{11}+\frac{1}{19}a^{10}-\frac{9}{19}a^{9}+\frac{4}{19}a^{8}+\frac{3}{19}a^{7}-\frac{3}{19}a^{6}+\frac{2}{19}a^{5}-\frac{8}{19}a^{4}-\frac{2}{19}a^{3}+\frac{2}{19}a^{2}+\frac{9}{19}a$, $\frac{1}{16\cdots 23}a^{38}-\frac{66\cdots 72}{16\cdots 23}a^{37}-\frac{38\cdots 26}{16\cdots 23}a^{36}-\frac{19\cdots 88}{16\cdots 23}a^{35}-\frac{51\cdots 41}{16\cdots 23}a^{34}-\frac{52\cdots 09}{16\cdots 23}a^{33}+\frac{14\cdots 29}{85\cdots 17}a^{32}-\frac{76\cdots 84}{16\cdots 23}a^{31}-\frac{19\cdots 14}{16\cdots 23}a^{30}-\frac{80\cdots 56}{16\cdots 23}a^{29}-\frac{10\cdots 98}{16\cdots 23}a^{28}-\frac{28\cdots 29}{16\cdots 23}a^{27}-\frac{71\cdots 33}{16\cdots 23}a^{26}+\frac{47\cdots 41}{16\cdots 23}a^{25}+\frac{31\cdots 14}{85\cdots 17}a^{24}-\frac{81\cdots 01}{16\cdots 23}a^{23}+\frac{84\cdots 54}{16\cdots 23}a^{22}+\frac{45\cdots 72}{16\cdots 23}a^{21}-\frac{42\cdots 24}{16\cdots 23}a^{20}-\frac{46\cdots 69}{16\cdots 23}a^{19}+\frac{10\cdots 55}{16\cdots 23}a^{18}-\frac{78\cdots 12}{16\cdots 23}a^{17}+\frac{85\cdots 33}{85\cdots 17}a^{16}+\frac{31\cdots 69}{16\cdots 23}a^{15}-\frac{76\cdots 18}{16\cdots 23}a^{14}-\frac{21\cdots 34}{16\cdots 23}a^{13}+\frac{39\cdots 10}{16\cdots 23}a^{12}+\frac{38\cdots 69}{16\cdots 23}a^{11}+\frac{25\cdots 23}{16\cdots 23}a^{10}-\frac{19\cdots 04}{16\cdots 23}a^{9}-\frac{11\cdots 09}{16\cdots 23}a^{8}-\frac{27\cdots 50}{16\cdots 23}a^{7}-\frac{30\cdots 99}{16\cdots 23}a^{6}-\frac{21\cdots 90}{16\cdots 23}a^{5}+\frac{25\cdots 52}{16\cdots 23}a^{4}-\frac{23\cdots 24}{16\cdots 23}a^{3}-\frac{59\cdots 84}{16\cdots 23}a^{2}+\frac{62\cdots 53}{16\cdots 23}a+\frac{29\cdots 01}{16\cdots 23}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  not computed
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  not computed
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $38$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:  not computed
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{39}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{174627773231779347132152827349937303698541390024823069427632498388746376232649719308860385493378089106300249}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^39 - 468*x^37 - 312*x^36 + 94302*x^35 + 118638*x^34 - 10878699*x^33 - 19307574*x^32 + 805821744*x^31 + 1800372886*x^30 - 40680500211*x^29 - 108237264603*x^28 + 1446005621320*x^27 + 4459027282749*x^26 - 36740305683120*x^25 - 130171431648258*x^24 + 667319579204967*x^23 + 2739095618686947*x^22 - 8508852916909748*x^21 - 41760228787431102*x^20 + 72335202029643423*x^19 + 459027912672556227*x^18 - 350556005056037274*x^17 - 3583579320625784766*x^16 + 223936776371258899*x^15 + 19350977144085682407*x^14 + 8850830449501775865*x^13 - 69386406134656900614*x^12 - 59318124902891828415*x^11 + 155603230401068027877*x^10 + 183666623582194428403*x^9 - 199867410901172997567*x^8 - 299712026978452810761*x^7 + 126091751205245716982*x^6 + 247052928867978365847*x^5 - 26149175806607388015*x^4 - 89715453239778791906*x^3 - 3866411569558451472*x^2 + 10712801222330860887*x + 1727305433480995147) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^39 - 468*x^37 - 312*x^36 + 94302*x^35 + 118638*x^34 - 10878699*x^33 - 19307574*x^32 + 805821744*x^31 + 1800372886*x^30 - 40680500211*x^29 - 108237264603*x^28 + 1446005621320*x^27 + 4459027282749*x^26 - 36740305683120*x^25 - 130171431648258*x^24 + 667319579204967*x^23 + 2739095618686947*x^22 - 8508852916909748*x^21 - 41760228787431102*x^20 + 72335202029643423*x^19 + 459027912672556227*x^18 - 350556005056037274*x^17 - 3583579320625784766*x^16 + 223936776371258899*x^15 + 19350977144085682407*x^14 + 8850830449501775865*x^13 - 69386406134656900614*x^12 - 59318124902891828415*x^11 + 155603230401068027877*x^10 + 183666623582194428403*x^9 - 199867410901172997567*x^8 - 299712026978452810761*x^7 + 126091751205245716982*x^6 + 247052928867978365847*x^5 - 26149175806607388015*x^4 - 89715453239778791906*x^3 - 3866411569558451472*x^2 + 10712801222330860887*x + 1727305433480995147, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^39 - 468*x^37 - 312*x^36 + 94302*x^35 + 118638*x^34 - 10878699*x^33 - 19307574*x^32 + 805821744*x^31 + 1800372886*x^30 - 40680500211*x^29 - 108237264603*x^28 + 1446005621320*x^27 + 4459027282749*x^26 - 36740305683120*x^25 - 130171431648258*x^24 + 667319579204967*x^23 + 2739095618686947*x^22 - 8508852916909748*x^21 - 41760228787431102*x^20 + 72335202029643423*x^19 + 459027912672556227*x^18 - 350556005056037274*x^17 - 3583579320625784766*x^16 + 223936776371258899*x^15 + 19350977144085682407*x^14 + 8850830449501775865*x^13 - 69386406134656900614*x^12 - 59318124902891828415*x^11 + 155603230401068027877*x^10 + 183666623582194428403*x^9 - 199867410901172997567*x^8 - 299712026978452810761*x^7 + 126091751205245716982*x^6 + 247052928867978365847*x^5 - 26149175806607388015*x^4 - 89715453239778791906*x^3 - 3866411569558451472*x^2 + 10712801222330860887*x + 1727305433480995147); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^39 - 468*x^37 - 312*x^36 + 94302*x^35 + 118638*x^34 - 10878699*x^33 - 19307574*x^32 + 805821744*x^31 + 1800372886*x^30 - 40680500211*x^29 - 108237264603*x^28 + 1446005621320*x^27 + 4459027282749*x^26 - 36740305683120*x^25 - 130171431648258*x^24 + 667319579204967*x^23 + 2739095618686947*x^22 - 8508852916909748*x^21 - 41760228787431102*x^20 + 72335202029643423*x^19 + 459027912672556227*x^18 - 350556005056037274*x^17 - 3583579320625784766*x^16 + 223936776371258899*x^15 + 19350977144085682407*x^14 + 8850830449501775865*x^13 - 69386406134656900614*x^12 - 59318124902891828415*x^11 + 155603230401068027877*x^10 + 183666623582194428403*x^9 - 199867410901172997567*x^8 - 299712026978452810761*x^7 + 126091751205245716982*x^6 + 247052928867978365847*x^5 - 26149175806607388015*x^4 - 89715453239778791906*x^3 - 3866411569558451472*x^2 + 10712801222330860887*x + 1727305433480995147); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{39}$ (as 39T1):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A cyclic group of order 39
The 39 conjugacy class representatives for $C_{39}$
Character table for $C_{39}$

Intermediate fields

3.3.13689.1, 13.13.542800770374370512771595361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.13.0.1}{13} }^{3}$ R $39$ $39$ ${\href{/padicField/11.13.0.1}{13} }^{3}$ R $39$ ${\href{/padicField/19.3.0.1}{3} }^{13}$ ${\href{/padicField/23.3.0.1}{3} }^{13}$ ${\href{/padicField/29.13.0.1}{13} }^{3}$ $39$ $39$ $39$ $39$ $39$ ${\href{/padicField/53.13.0.1}{13} }^{3}$ ${\href{/padicField/59.13.0.1}{13} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $39$$3$$13$$52$
\(13\) Copy content Toggle raw display Deg $39$$39$$1$$74$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)