magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -20, -190, 1330, 5985, -26334, -74613, 245157, 490314, -1307504, -1961256, 4457400, 5200300, -10400600, -9657700, 17383860, 13037895, -21474180, -13123110, 20030010, 10015005, -14307150, -5852925, 7888725, 2629575, -3365856, -906192, 1107568, 237336, -278256, -46376, 52360, 6545, -7140, -630, 666, 37, -38, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^39 - x^38 - 38*x^37 + 37*x^36 + 666*x^35 - 630*x^34 - 7140*x^33 + 6545*x^32 + 52360*x^31 - 46376*x^30 - 278256*x^29 + 237336*x^28 + 1107568*x^27 - 906192*x^26 - 3365856*x^25 + 2629575*x^24 + 7888725*x^23 - 5852925*x^22 - 14307150*x^21 + 10015005*x^20 + 20030010*x^19 - 13123110*x^18 - 21474180*x^17 + 13037895*x^16 + 17383860*x^15 - 9657700*x^14 - 10400600*x^13 + 5200300*x^12 + 4457400*x^11 - 1961256*x^10 - 1307504*x^9 + 490314*x^8 + 245157*x^7 - 74613*x^6 - 26334*x^5 + 5985*x^4 + 1330*x^3 - 190*x^2 - 20*x + 1)
gp: K = bnfinit(x^39 - x^38 - 38*x^37 + 37*x^36 + 666*x^35 - 630*x^34 - 7140*x^33 + 6545*x^32 + 52360*x^31 - 46376*x^30 - 278256*x^29 + 237336*x^28 + 1107568*x^27 - 906192*x^26 - 3365856*x^25 + 2629575*x^24 + 7888725*x^23 - 5852925*x^22 - 14307150*x^21 + 10015005*x^20 + 20030010*x^19 - 13123110*x^18 - 21474180*x^17 + 13037895*x^16 + 17383860*x^15 - 9657700*x^14 - 10400600*x^13 + 5200300*x^12 + 4457400*x^11 - 1961256*x^10 - 1307504*x^9 + 490314*x^8 + 245157*x^7 - 74613*x^6 - 26334*x^5 + 5985*x^4 + 1330*x^3 - 190*x^2 - 20*x + 1, 1)
\( x^{39} - x^{38} - 38 x^{37} + 37 x^{36} + 666 x^{35} - 630 x^{34} - 7140 x^{33} + 6545 x^{32} + 52360 x^{31} - 46376 x^{30} - 278256 x^{29} + 237336 x^{28} + 1107568 x^{27} - 906192 x^{26} - 3365856 x^{25} + 2629575 x^{24} + 7888725 x^{23} - 5852925 x^{22} - 14307150 x^{21} + 10015005 x^{20} + 20030010 x^{19} - 13123110 x^{18} - 21474180 x^{17} + 13037895 x^{16} + 17383860 x^{15} - 9657700 x^{14} - 10400600 x^{13} + 5200300 x^{12} + 4457400 x^{11} - 1961256 x^{10} - 1307504 x^{9} + 490314 x^{8} + 245157 x^{7} - 74613 x^{6} - 26334 x^{5} + 5985 x^{4} + 1330 x^{3} - 190 x^{2} - 20 x + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $39$ |
|
| Signature: | | $[39, 0]$ |
|
| Discriminant: | | \(1287743804278744050410620426954739687963064854495168753870500853746064161=79^{38}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $70.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(79\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{79}(1,·)$, $\chi_{79}(2,·)$, $\chi_{79}(4,·)$, $\chi_{79}(5,·)$, $\chi_{79}(8,·)$, $\chi_{79}(9,·)$, $\chi_{79}(10,·)$, $\chi_{79}(11,·)$, $\chi_{79}(13,·)$, $\chi_{79}(16,·)$, $\chi_{79}(18,·)$, $\chi_{79}(19,·)$, $\chi_{79}(20,·)$, $\chi_{79}(21,·)$, $\chi_{79}(22,·)$, $\chi_{79}(23,·)$, $\chi_{79}(25,·)$, $\chi_{79}(26,·)$, $\chi_{79}(31,·)$, $\chi_{79}(32,·)$, $\chi_{79}(36,·)$, $\chi_{79}(38,·)$, $\chi_{79}(40,·)$, $\chi_{79}(42,·)$, $\chi_{79}(44,·)$, $\chi_{79}(45,·)$, $\chi_{79}(46,·)$, $\chi_{79}(49,·)$, $\chi_{79}(50,·)$, $\chi_{79}(51,·)$, $\chi_{79}(52,·)$, $\chi_{79}(55,·)$, $\chi_{79}(62,·)$, $\chi_{79}(64,·)$, $\chi_{79}(65,·)$, $\chi_{79}(67,·)$, $\chi_{79}(72,·)$, $\chi_{79}(73,·)$, $\chi_{79}(76,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$
Trivial group, which has order $1$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $38$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 536916737153376600000000 \)
(assuming GRH)
|
|
$C_{39}$ (as 39T1):
sage: K.galois_group(type='pari')
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
$39$ |
$39$ |
$39$ |
$39$ |
$39$ |
$39$ |
${\href{/LocalNumberField/17.13.0.1}{13} }^{3}$ |
$39$ |
${\href{/LocalNumberField/23.3.0.1}{3} }^{13}$ |
$39$ |
$39$ |
$39$ |
${\href{/LocalNumberField/41.13.0.1}{13} }^{3}$ |
$39$ |
$39$ |
$39$ |
$39$ |
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])