Properties

Label 39.1.30949918466...0855.1
Degree $39$
Signature $[1, 19]$
Discriminant $-\,5\cdot 7\cdot 41\cdot 659\cdot 2251\cdot 31793\cdot 2678539\cdot 118932731307271627\cdot 1435541730552723797020749364164204653$
Root discriminant $76.63$
Ramified primes $5, 7, 41, 659, 2251, 31793, 2678539, 118932731307271627, 1435541730552723797020749364164204653$
Class number Not computed
Class group Not computed
Galois group $S_{39}$ (as 39T306)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^39 - x - 4)
 
gp: K = bnfinit(x^39 - x - 4, 1)
 

Normalized defining polynomial

\( x^{39} - x - 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $39$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 19]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-30949918466425163032455347262376548002357192825523150128829529791279710855=-\,5\cdot 7\cdot 41\cdot 659\cdot 2251\cdot 31793\cdot 2678539\cdot 118932731307271627\cdot 1435541730552723797020749364164204653\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $76.63$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 7, 41, 659, 2251, 31793, 2678539, 118932731307271627, 1435541730552723797020749364164204653$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2} a^{20} - \frac{1}{2} a$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{26} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{30} - \frac{1}{2} a^{11}$, $\frac{1}{2} a^{31} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{32} - \frac{1}{2} a^{13}$, $\frac{1}{2} a^{33} - \frac{1}{2} a^{14}$, $\frac{1}{2} a^{34} - \frac{1}{2} a^{15}$, $\frac{1}{2} a^{35} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{36} - \frac{1}{2} a^{17}$, $\frac{1}{2} a^{37} - \frac{1}{2} a^{18}$, $\frac{1}{2} a^{38} - \frac{1}{2} a^{19}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_{39}$ (as 39T306):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 20397882081197443358640281739902897356800000000
The 31185 conjugacy class representatives for $S_{39}$ are not computed
Character table for $S_{39}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $36{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ $27{,}\,{\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ R R $34{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ $39$ $18{,}\,17{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ $20{,}\,19$ $22{,}\,{\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ $22{,}\,17$ $26{,}\,{\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ $29{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ R $39$ $15{,}\,{\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ $15{,}\,{\href{/LocalNumberField/53.13.0.1}{13} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ $19^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
7Data not computed
41Data not computed
659Data not computed
2251Data not computed
31793Data not computed
2678539Data not computed
118932731307271627Data not computed
1435541730552723797020749364164204653Data not computed