Properties

Label 38.38.375...928.1
Degree $38$
Signature $[38, 0]$
Discriminant $3.756\times 10^{112}$
Root discriminant \(917.26\)
Ramified primes $2,3,19$
Class number not computed
Class group not computed
Galois group $C_{38}$ (as 38T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^38 - 399*x^36 - 266*x^35 + 70148*x^34 + 87020*x^33 - 7182209*x^32 - 12457464*x^31 + 477137082*x^30 + 1032382746*x^29 - 21701301440*x^28 - 55237466216*x^27 + 695156070533*x^26 + 2015632656852*x^25 - 15888580830821*x^24 - 51660807861512*x^23 + 259378354379174*x^22 + 943233324679388*x^21 - 2989860507551200*x^20 - 12300250827756042*x^19 + 23651579816234812*x^18 + 113664376988967624*x^17 - 121022580509952352*x^16 - 730444453804863254*x^15 + 348726570733652776*x^14 + 3165382764313672498*x^13 - 311710190949163192*x^12 - 8864686668184347808*x^11 - 876281456624103747*x^10 + 15294419019527334076*x^9 + 1922777588324163853*x^8 - 15541311823983218862*x^7 - 401306313611257396*x^6 + 8214394275890294054*x^5 - 982571054057336775*x^4 - 1549163770234993240*x^3 + 243256145713820310*x^2 + 83491121636914172*x - 12096418325420651)
 
gp: K = bnfinit(y^38 - 399*y^36 - 266*y^35 + 70148*y^34 + 87020*y^33 - 7182209*y^32 - 12457464*y^31 + 477137082*y^30 + 1032382746*y^29 - 21701301440*y^28 - 55237466216*y^27 + 695156070533*y^26 + 2015632656852*y^25 - 15888580830821*y^24 - 51660807861512*y^23 + 259378354379174*y^22 + 943233324679388*y^21 - 2989860507551200*y^20 - 12300250827756042*y^19 + 23651579816234812*y^18 + 113664376988967624*y^17 - 121022580509952352*y^16 - 730444453804863254*y^15 + 348726570733652776*y^14 + 3165382764313672498*y^13 - 311710190949163192*y^12 - 8864686668184347808*y^11 - 876281456624103747*y^10 + 15294419019527334076*y^9 + 1922777588324163853*y^8 - 15541311823983218862*y^7 - 401306313611257396*y^6 + 8214394275890294054*y^5 - 982571054057336775*y^4 - 1549163770234993240*y^3 + 243256145713820310*y^2 + 83491121636914172*y - 12096418325420651, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^38 - 399*x^36 - 266*x^35 + 70148*x^34 + 87020*x^33 - 7182209*x^32 - 12457464*x^31 + 477137082*x^30 + 1032382746*x^29 - 21701301440*x^28 - 55237466216*x^27 + 695156070533*x^26 + 2015632656852*x^25 - 15888580830821*x^24 - 51660807861512*x^23 + 259378354379174*x^22 + 943233324679388*x^21 - 2989860507551200*x^20 - 12300250827756042*x^19 + 23651579816234812*x^18 + 113664376988967624*x^17 - 121022580509952352*x^16 - 730444453804863254*x^15 + 348726570733652776*x^14 + 3165382764313672498*x^13 - 311710190949163192*x^12 - 8864686668184347808*x^11 - 876281456624103747*x^10 + 15294419019527334076*x^9 + 1922777588324163853*x^8 - 15541311823983218862*x^7 - 401306313611257396*x^6 + 8214394275890294054*x^5 - 982571054057336775*x^4 - 1549163770234993240*x^3 + 243256145713820310*x^2 + 83491121636914172*x - 12096418325420651);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^38 - 399*x^36 - 266*x^35 + 70148*x^34 + 87020*x^33 - 7182209*x^32 - 12457464*x^31 + 477137082*x^30 + 1032382746*x^29 - 21701301440*x^28 - 55237466216*x^27 + 695156070533*x^26 + 2015632656852*x^25 - 15888580830821*x^24 - 51660807861512*x^23 + 259378354379174*x^22 + 943233324679388*x^21 - 2989860507551200*x^20 - 12300250827756042*x^19 + 23651579816234812*x^18 + 113664376988967624*x^17 - 121022580509952352*x^16 - 730444453804863254*x^15 + 348726570733652776*x^14 + 3165382764313672498*x^13 - 311710190949163192*x^12 - 8864686668184347808*x^11 - 876281456624103747*x^10 + 15294419019527334076*x^9 + 1922777588324163853*x^8 - 15541311823983218862*x^7 - 401306313611257396*x^6 + 8214394275890294054*x^5 - 982571054057336775*x^4 - 1549163770234993240*x^3 + 243256145713820310*x^2 + 83491121636914172*x - 12096418325420651)
 

\( x^{38} - 399 x^{36} - 266 x^{35} + 70148 x^{34} + 87020 x^{33} - 7182209 x^{32} - 12457464 x^{31} + \cdots - 12\!\cdots\!51 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $38$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[38, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(375\!\cdots\!928\) \(\medspace = 2^{38}\cdot 3^{19}\cdot 19^{72}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(917.26\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}19^{36/19}\approx 917.2594246234627$
Ramified primes:   \(2\), \(3\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{3}) \)
$\card{ \Gal(K/\Q) }$:  $38$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4332=2^{2}\cdot 3\cdot 19^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{4332}(1,·)$, $\chi_{4332}(2053,·)$, $\chi_{4332}(647,·)$, $\chi_{4332}(4105,·)$, $\chi_{4332}(2699,·)$, $\chi_{4332}(913,·)$, $\chi_{4332}(2965,·)$, $\chi_{4332}(1559,·)$, $\chi_{4332}(3611,·)$, $\chi_{4332}(1825,·)$, $\chi_{4332}(419,·)$, $\chi_{4332}(3877,·)$, $\chi_{4332}(2471,·)$, $\chi_{4332}(685,·)$, $\chi_{4332}(2737,·)$, $\chi_{4332}(1331,·)$, $\chi_{4332}(3383,·)$, $\chi_{4332}(1597,·)$, $\chi_{4332}(191,·)$, $\chi_{4332}(3649,·)$, $\chi_{4332}(2243,·)$, $\chi_{4332}(4295,·)$, $\chi_{4332}(457,·)$, $\chi_{4332}(2509,·)$, $\chi_{4332}(1103,·)$, $\chi_{4332}(3155,·)$, $\chi_{4332}(1369,·)$, $\chi_{4332}(3421,·)$, $\chi_{4332}(2015,·)$, $\chi_{4332}(4067,·)$, $\chi_{4332}(229,·)$, $\chi_{4332}(2281,·)$, $\chi_{4332}(875,·)$, $\chi_{4332}(2927,·)$, $\chi_{4332}(1141,·)$, $\chi_{4332}(3193,·)$, $\chi_{4332}(1787,·)$, $\chi_{4332}(3839,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $\frac{1}{1571}a^{35}-\frac{615}{1571}a^{34}+\frac{97}{1571}a^{33}-\frac{355}{1571}a^{32}+\frac{733}{1571}a^{31}-\frac{242}{1571}a^{30}+\frac{76}{1571}a^{29}+\frac{185}{1571}a^{28}+\frac{144}{1571}a^{27}+\frac{332}{1571}a^{26}+\frac{143}{1571}a^{25}+\frac{61}{1571}a^{24}+\frac{245}{1571}a^{23}-\frac{31}{1571}a^{22}-\frac{406}{1571}a^{21}+\frac{472}{1571}a^{20}-\frac{708}{1571}a^{19}-\frac{532}{1571}a^{18}-\frac{119}{1571}a^{17}+\frac{410}{1571}a^{16}+\frac{385}{1571}a^{15}-\frac{31}{1571}a^{14}+\frac{676}{1571}a^{13}-\frac{557}{1571}a^{12}-\frac{287}{1571}a^{11}+\frac{383}{1571}a^{10}+\frac{583}{1571}a^{9}-\frac{540}{1571}a^{8}+\frac{628}{1571}a^{7}+\frac{244}{1571}a^{6}+\frac{742}{1571}a^{5}+\frac{667}{1571}a^{4}-\frac{287}{1571}a^{3}+\frac{285}{1571}a^{2}-\frac{41}{1571}a-\frac{506}{1571}$, $\frac{1}{88\!\cdots\!89}a^{36}+\frac{24\!\cdots\!56}{88\!\cdots\!89}a^{35}+\frac{25\!\cdots\!91}{88\!\cdots\!89}a^{34}+\frac{47\!\cdots\!48}{88\!\cdots\!89}a^{33}-\frac{16\!\cdots\!28}{88\!\cdots\!89}a^{32}+\frac{42\!\cdots\!19}{88\!\cdots\!89}a^{31}-\frac{70\!\cdots\!96}{88\!\cdots\!89}a^{30}+\frac{43\!\cdots\!60}{88\!\cdots\!89}a^{29}+\frac{25\!\cdots\!02}{88\!\cdots\!89}a^{28}+\frac{41\!\cdots\!71}{88\!\cdots\!89}a^{27}-\frac{31\!\cdots\!36}{88\!\cdots\!89}a^{26}+\frac{12\!\cdots\!53}{88\!\cdots\!89}a^{25}+\frac{26\!\cdots\!69}{88\!\cdots\!89}a^{24}-\frac{12\!\cdots\!42}{88\!\cdots\!89}a^{23}+\frac{34\!\cdots\!80}{88\!\cdots\!89}a^{22}+\frac{68\!\cdots\!02}{88\!\cdots\!89}a^{21}-\frac{13\!\cdots\!57}{88\!\cdots\!89}a^{20}+\frac{19\!\cdots\!33}{88\!\cdots\!89}a^{19}+\frac{31\!\cdots\!94}{88\!\cdots\!89}a^{18}+\frac{11\!\cdots\!47}{88\!\cdots\!89}a^{17}+\frac{18\!\cdots\!06}{88\!\cdots\!89}a^{16}-\frac{16\!\cdots\!02}{88\!\cdots\!89}a^{15}-\frac{42\!\cdots\!96}{88\!\cdots\!89}a^{14}-\frac{65\!\cdots\!54}{88\!\cdots\!89}a^{13}-\frac{38\!\cdots\!75}{88\!\cdots\!89}a^{12}+\frac{60\!\cdots\!72}{88\!\cdots\!89}a^{11}-\frac{33\!\cdots\!63}{88\!\cdots\!89}a^{10}+\frac{36\!\cdots\!40}{88\!\cdots\!89}a^{9}+\frac{16\!\cdots\!43}{88\!\cdots\!89}a^{8}+\frac{42\!\cdots\!66}{88\!\cdots\!89}a^{7}-\frac{87\!\cdots\!80}{88\!\cdots\!89}a^{6}-\frac{31\!\cdots\!55}{88\!\cdots\!89}a^{5}+\frac{28\!\cdots\!29}{88\!\cdots\!89}a^{4}-\frac{80\!\cdots\!27}{88\!\cdots\!89}a^{3}+\frac{40\!\cdots\!26}{88\!\cdots\!89}a^{2}+\frac{35\!\cdots\!37}{88\!\cdots\!89}a-\frac{22\!\cdots\!95}{88\!\cdots\!89}$, $\frac{1}{58\!\cdots\!83}a^{37}+\frac{62\!\cdots\!82}{58\!\cdots\!83}a^{36}+\frac{14\!\cdots\!29}{58\!\cdots\!83}a^{35}+\frac{37\!\cdots\!88}{58\!\cdots\!83}a^{34}-\frac{19\!\cdots\!89}{58\!\cdots\!83}a^{33}+\frac{31\!\cdots\!16}{58\!\cdots\!83}a^{32}+\frac{22\!\cdots\!01}{58\!\cdots\!83}a^{31}+\frac{15\!\cdots\!01}{58\!\cdots\!83}a^{30}-\frac{12\!\cdots\!15}{58\!\cdots\!83}a^{29}+\frac{49\!\cdots\!29}{58\!\cdots\!83}a^{28}+\frac{25\!\cdots\!19}{58\!\cdots\!83}a^{27}+\frac{21\!\cdots\!76}{58\!\cdots\!83}a^{26}-\frac{15\!\cdots\!85}{58\!\cdots\!83}a^{25}-\frac{27\!\cdots\!79}{58\!\cdots\!83}a^{24}-\frac{28\!\cdots\!95}{58\!\cdots\!83}a^{23}+\frac{22\!\cdots\!77}{58\!\cdots\!83}a^{22}+\frac{27\!\cdots\!18}{58\!\cdots\!83}a^{21}+\frac{18\!\cdots\!12}{58\!\cdots\!83}a^{20}-\frac{50\!\cdots\!86}{58\!\cdots\!83}a^{19}-\frac{19\!\cdots\!21}{58\!\cdots\!83}a^{18}-\frac{14\!\cdots\!70}{58\!\cdots\!83}a^{17}+\frac{20\!\cdots\!89}{58\!\cdots\!83}a^{16}+\frac{26\!\cdots\!21}{58\!\cdots\!83}a^{15}-\frac{87\!\cdots\!01}{58\!\cdots\!83}a^{14}+\frac{18\!\cdots\!57}{58\!\cdots\!83}a^{13}+\frac{20\!\cdots\!29}{58\!\cdots\!83}a^{12}+\frac{16\!\cdots\!79}{58\!\cdots\!83}a^{11}+\frac{16\!\cdots\!24}{58\!\cdots\!83}a^{10}+\frac{11\!\cdots\!93}{58\!\cdots\!83}a^{9}-\frac{23\!\cdots\!15}{58\!\cdots\!83}a^{8}-\frac{47\!\cdots\!30}{58\!\cdots\!83}a^{7}+\frac{18\!\cdots\!33}{58\!\cdots\!83}a^{6}-\frac{29\!\cdots\!13}{58\!\cdots\!83}a^{5}+\frac{22\!\cdots\!49}{58\!\cdots\!83}a^{4}+\frac{14\!\cdots\!41}{58\!\cdots\!83}a^{3}+\frac{87\!\cdots\!47}{58\!\cdots\!83}a^{2}-\frac{12\!\cdots\!27}{58\!\cdots\!83}a-\frac{91\!\cdots\!21}{58\!\cdots\!83}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $37$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^38 - 399*x^36 - 266*x^35 + 70148*x^34 + 87020*x^33 - 7182209*x^32 - 12457464*x^31 + 477137082*x^30 + 1032382746*x^29 - 21701301440*x^28 - 55237466216*x^27 + 695156070533*x^26 + 2015632656852*x^25 - 15888580830821*x^24 - 51660807861512*x^23 + 259378354379174*x^22 + 943233324679388*x^21 - 2989860507551200*x^20 - 12300250827756042*x^19 + 23651579816234812*x^18 + 113664376988967624*x^17 - 121022580509952352*x^16 - 730444453804863254*x^15 + 348726570733652776*x^14 + 3165382764313672498*x^13 - 311710190949163192*x^12 - 8864686668184347808*x^11 - 876281456624103747*x^10 + 15294419019527334076*x^9 + 1922777588324163853*x^8 - 15541311823983218862*x^7 - 401306313611257396*x^6 + 8214394275890294054*x^5 - 982571054057336775*x^4 - 1549163770234993240*x^3 + 243256145713820310*x^2 + 83491121636914172*x - 12096418325420651)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^38 - 399*x^36 - 266*x^35 + 70148*x^34 + 87020*x^33 - 7182209*x^32 - 12457464*x^31 + 477137082*x^30 + 1032382746*x^29 - 21701301440*x^28 - 55237466216*x^27 + 695156070533*x^26 + 2015632656852*x^25 - 15888580830821*x^24 - 51660807861512*x^23 + 259378354379174*x^22 + 943233324679388*x^21 - 2989860507551200*x^20 - 12300250827756042*x^19 + 23651579816234812*x^18 + 113664376988967624*x^17 - 121022580509952352*x^16 - 730444453804863254*x^15 + 348726570733652776*x^14 + 3165382764313672498*x^13 - 311710190949163192*x^12 - 8864686668184347808*x^11 - 876281456624103747*x^10 + 15294419019527334076*x^9 + 1922777588324163853*x^8 - 15541311823983218862*x^7 - 401306313611257396*x^6 + 8214394275890294054*x^5 - 982571054057336775*x^4 - 1549163770234993240*x^3 + 243256145713820310*x^2 + 83491121636914172*x - 12096418325420651, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^38 - 399*x^36 - 266*x^35 + 70148*x^34 + 87020*x^33 - 7182209*x^32 - 12457464*x^31 + 477137082*x^30 + 1032382746*x^29 - 21701301440*x^28 - 55237466216*x^27 + 695156070533*x^26 + 2015632656852*x^25 - 15888580830821*x^24 - 51660807861512*x^23 + 259378354379174*x^22 + 943233324679388*x^21 - 2989860507551200*x^20 - 12300250827756042*x^19 + 23651579816234812*x^18 + 113664376988967624*x^17 - 121022580509952352*x^16 - 730444453804863254*x^15 + 348726570733652776*x^14 + 3165382764313672498*x^13 - 311710190949163192*x^12 - 8864686668184347808*x^11 - 876281456624103747*x^10 + 15294419019527334076*x^9 + 1922777588324163853*x^8 - 15541311823983218862*x^7 - 401306313611257396*x^6 + 8214394275890294054*x^5 - 982571054057336775*x^4 - 1549163770234993240*x^3 + 243256145713820310*x^2 + 83491121636914172*x - 12096418325420651);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^38 - 399*x^36 - 266*x^35 + 70148*x^34 + 87020*x^33 - 7182209*x^32 - 12457464*x^31 + 477137082*x^30 + 1032382746*x^29 - 21701301440*x^28 - 55237466216*x^27 + 695156070533*x^26 + 2015632656852*x^25 - 15888580830821*x^24 - 51660807861512*x^23 + 259378354379174*x^22 + 943233324679388*x^21 - 2989860507551200*x^20 - 12300250827756042*x^19 + 23651579816234812*x^18 + 113664376988967624*x^17 - 121022580509952352*x^16 - 730444453804863254*x^15 + 348726570733652776*x^14 + 3165382764313672498*x^13 - 311710190949163192*x^12 - 8864686668184347808*x^11 - 876281456624103747*x^10 + 15294419019527334076*x^9 + 1922777588324163853*x^8 - 15541311823983218862*x^7 - 401306313611257396*x^6 + 8214394275890294054*x^5 - 982571054057336775*x^4 - 1549163770234993240*x^3 + 243256145713820310*x^2 + 83491121636914172*x - 12096418325420651);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{38}$ (as 38T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 38
The 38 conjugacy class representatives for $C_{38}$
Character table for $C_{38}$

Intermediate fields

\(\Q(\sqrt{3}) \), 19.19.10842505080063916320800450434338728415281531281.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R $38$ $38$ $19^{2}$ $19^{2}$ $38$ R $19^{2}$ $38$ $38$ $19^{2}$ $38$ $38$ $19^{2}$ $38$ $19^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $38$$2$$19$$38$
\(3\) Copy content Toggle raw display Deg $38$$2$$19$$19$
\(19\) Copy content Toggle raw display Deg $38$$19$$2$$72$