Properties

Label 38.38.224...125.1
Degree $38$
Signature $[38, 0]$
Discriminant $2.242\times 10^{105}$
Root discriminant \(592.09\)
Ramified primes $5,19$
Class number not computed
Class group not computed
Galois group $C_{38}$ (as 38T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^38 - 19*x^37 - 190*x^36 + 5263*x^35 + 10963*x^34 - 655956*x^33 + 271263*x^32 + 48829164*x^31 - 74272197*x^30 - 2427590879*x^29 + 4963339201*x^28 + 85311795747*x^27 - 192448926397*x^26 - 2186062812785*x^25 + 4980640240893*x^24 + 41507384238113*x^23 - 90602195976460*x^22 - 587394556501288*x^21 + 1185165731831058*x^20 + 6181335356273740*x^19 - 11252186392848870*x^18 - 47909517088369504*x^17 + 77654230949000120*x^16 + 268901707689505353*x^15 - 387932611852231165*x^14 - 1065553844073230755*x^13 + 1387879177866434969*x^12 + 2872799715815077105*x^11 - 3477750883069386065*x^10 - 4978197957785195915*x^9 + 5844343521008310247*x^8 + 5024712299211630779*x^7 - 6066136922383939789*x^6 - 2388621891807945980*x^5 + 3307037404639155292*x^4 + 219641714027477785*x^3 - 641666806588881139*x^2 + 40067232399563857*x + 14911143898147099)
 
gp: K = bnfinit(y^38 - 19*y^37 - 190*y^36 + 5263*y^35 + 10963*y^34 - 655956*y^33 + 271263*y^32 + 48829164*y^31 - 74272197*y^30 - 2427590879*y^29 + 4963339201*y^28 + 85311795747*y^27 - 192448926397*y^26 - 2186062812785*y^25 + 4980640240893*y^24 + 41507384238113*y^23 - 90602195976460*y^22 - 587394556501288*y^21 + 1185165731831058*y^20 + 6181335356273740*y^19 - 11252186392848870*y^18 - 47909517088369504*y^17 + 77654230949000120*y^16 + 268901707689505353*y^15 - 387932611852231165*y^14 - 1065553844073230755*y^13 + 1387879177866434969*y^12 + 2872799715815077105*y^11 - 3477750883069386065*y^10 - 4978197957785195915*y^9 + 5844343521008310247*y^8 + 5024712299211630779*y^7 - 6066136922383939789*y^6 - 2388621891807945980*y^5 + 3307037404639155292*y^4 + 219641714027477785*y^3 - 641666806588881139*y^2 + 40067232399563857*y + 14911143898147099, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^38 - 19*x^37 - 190*x^36 + 5263*x^35 + 10963*x^34 - 655956*x^33 + 271263*x^32 + 48829164*x^31 - 74272197*x^30 - 2427590879*x^29 + 4963339201*x^28 + 85311795747*x^27 - 192448926397*x^26 - 2186062812785*x^25 + 4980640240893*x^24 + 41507384238113*x^23 - 90602195976460*x^22 - 587394556501288*x^21 + 1185165731831058*x^20 + 6181335356273740*x^19 - 11252186392848870*x^18 - 47909517088369504*x^17 + 77654230949000120*x^16 + 268901707689505353*x^15 - 387932611852231165*x^14 - 1065553844073230755*x^13 + 1387879177866434969*x^12 + 2872799715815077105*x^11 - 3477750883069386065*x^10 - 4978197957785195915*x^9 + 5844343521008310247*x^8 + 5024712299211630779*x^7 - 6066136922383939789*x^6 - 2388621891807945980*x^5 + 3307037404639155292*x^4 + 219641714027477785*x^3 - 641666806588881139*x^2 + 40067232399563857*x + 14911143898147099);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^38 - 19*x^37 - 190*x^36 + 5263*x^35 + 10963*x^34 - 655956*x^33 + 271263*x^32 + 48829164*x^31 - 74272197*x^30 - 2427590879*x^29 + 4963339201*x^28 + 85311795747*x^27 - 192448926397*x^26 - 2186062812785*x^25 + 4980640240893*x^24 + 41507384238113*x^23 - 90602195976460*x^22 - 587394556501288*x^21 + 1185165731831058*x^20 + 6181335356273740*x^19 - 11252186392848870*x^18 - 47909517088369504*x^17 + 77654230949000120*x^16 + 268901707689505353*x^15 - 387932611852231165*x^14 - 1065553844073230755*x^13 + 1387879177866434969*x^12 + 2872799715815077105*x^11 - 3477750883069386065*x^10 - 4978197957785195915*x^9 + 5844343521008310247*x^8 + 5024712299211630779*x^7 - 6066136922383939789*x^6 - 2388621891807945980*x^5 + 3307037404639155292*x^4 + 219641714027477785*x^3 - 641666806588881139*x^2 + 40067232399563857*x + 14911143898147099)
 

\( x^{38} - 19 x^{37} - 190 x^{36} + 5263 x^{35} + 10963 x^{34} - 655956 x^{33} + 271263 x^{32} + \cdots + 14\!\cdots\!99 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $38$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[38, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(224\!\cdots\!125\) \(\medspace = 5^{19}\cdot 19^{72}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(592.09\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}19^{36/19}\approx 592.0884126197448$
Ramified primes:   \(5\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $38$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1805=5\cdot 19^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{1805}(1,·)$, $\chi_{1805}(514,·)$, $\chi_{1805}(134,·)$, $\chi_{1805}(1426,·)$, $\chi_{1805}(1046,·)$, $\chi_{1805}(1559,·)$, $\chi_{1805}(666,·)$, $\chi_{1805}(1179,·)$, $\chi_{1805}(286,·)$, $\chi_{1805}(799,·)$, $\chi_{1805}(419,·)$, $\chi_{1805}(39,·)$, $\chi_{1805}(1711,·)$, $\chi_{1805}(1331,·)$, $\chi_{1805}(951,·)$, $\chi_{1805}(1464,·)$, $\chi_{1805}(571,·)$, $\chi_{1805}(1084,·)$, $\chi_{1805}(191,·)$, $\chi_{1805}(704,·)$, $\chi_{1805}(324,·)$, $\chi_{1805}(1616,·)$, $\chi_{1805}(1236,·)$, $\chi_{1805}(1749,·)$, $\chi_{1805}(856,·)$, $\chi_{1805}(1369,·)$, $\chi_{1805}(476,·)$, $\chi_{1805}(989,·)$, $\chi_{1805}(96,·)$, $\chi_{1805}(609,·)$, $\chi_{1805}(229,·)$, $\chi_{1805}(1521,·)$, $\chi_{1805}(1141,·)$, $\chi_{1805}(1654,·)$, $\chi_{1805}(761,·)$, $\chi_{1805}(1274,·)$, $\chi_{1805}(381,·)$, $\chi_{1805}(894,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $\frac{1}{1571}a^{35}-\frac{92}{1571}a^{34}-\frac{694}{1571}a^{33}+\frac{766}{1571}a^{32}-\frac{157}{1571}a^{31}-\frac{308}{1571}a^{30}-\frac{716}{1571}a^{29}+\frac{731}{1571}a^{28}+\frac{432}{1571}a^{27}+\frac{267}{1571}a^{26}-\frac{309}{1571}a^{25}-\frac{333}{1571}a^{24}-\frac{243}{1571}a^{23}-\frac{642}{1571}a^{22}-\frac{79}{1571}a^{21}-\frac{669}{1571}a^{20}-\frac{435}{1571}a^{19}+\frac{23}{1571}a^{18}-\frac{54}{1571}a^{17}-\frac{358}{1571}a^{16}+\frac{338}{1571}a^{15}-\frac{701}{1571}a^{14}-\frac{374}{1571}a^{13}-\frac{452}{1571}a^{12}-\frac{356}{1571}a^{11}+\frac{377}{1571}a^{10}+\frac{581}{1571}a^{9}+\frac{333}{1571}a^{8}-\frac{525}{1571}a^{7}-\frac{440}{1571}a^{6}+\frac{749}{1571}a^{5}-\frac{614}{1571}a^{4}-\frac{424}{1571}a^{3}-\frac{462}{1571}a^{2}-\frac{361}{1571}a-\frac{23}{1571}$, $\frac{1}{88\!\cdots\!89}a^{36}+\frac{24\!\cdots\!38}{88\!\cdots\!89}a^{35}+\frac{27\!\cdots\!23}{88\!\cdots\!89}a^{34}+\frac{12\!\cdots\!91}{88\!\cdots\!89}a^{33}-\frac{10\!\cdots\!17}{88\!\cdots\!89}a^{32}+\frac{83\!\cdots\!90}{88\!\cdots\!89}a^{31}+\frac{54\!\cdots\!24}{88\!\cdots\!89}a^{30}+\frac{23\!\cdots\!15}{88\!\cdots\!89}a^{29}-\frac{22\!\cdots\!01}{88\!\cdots\!89}a^{28}-\frac{21\!\cdots\!32}{88\!\cdots\!89}a^{27}-\frac{26\!\cdots\!78}{88\!\cdots\!89}a^{26}+\frac{10\!\cdots\!02}{88\!\cdots\!89}a^{25}+\frac{36\!\cdots\!74}{88\!\cdots\!89}a^{24}-\frac{32\!\cdots\!83}{88\!\cdots\!89}a^{23}-\frac{26\!\cdots\!75}{88\!\cdots\!89}a^{22}-\frac{27\!\cdots\!53}{88\!\cdots\!89}a^{21}-\frac{24\!\cdots\!03}{88\!\cdots\!89}a^{20}+\frac{29\!\cdots\!43}{88\!\cdots\!89}a^{19}-\frac{27\!\cdots\!94}{88\!\cdots\!89}a^{18}+\frac{37\!\cdots\!69}{88\!\cdots\!89}a^{17}-\frac{36\!\cdots\!53}{88\!\cdots\!89}a^{16}+\frac{35\!\cdots\!12}{88\!\cdots\!89}a^{15}-\frac{36\!\cdots\!57}{88\!\cdots\!89}a^{14}+\frac{18\!\cdots\!40}{88\!\cdots\!89}a^{13}-\frac{14\!\cdots\!99}{88\!\cdots\!89}a^{12}-\frac{42\!\cdots\!67}{88\!\cdots\!89}a^{11}+\frac{33\!\cdots\!07}{88\!\cdots\!89}a^{10}-\frac{16\!\cdots\!00}{88\!\cdots\!89}a^{9}-\frac{39\!\cdots\!21}{88\!\cdots\!89}a^{8}-\frac{42\!\cdots\!30}{88\!\cdots\!89}a^{7}-\frac{27\!\cdots\!48}{88\!\cdots\!89}a^{6}-\frac{10\!\cdots\!64}{88\!\cdots\!89}a^{5}+\frac{15\!\cdots\!75}{88\!\cdots\!89}a^{4}+\frac{13\!\cdots\!53}{88\!\cdots\!89}a^{3}+\frac{17\!\cdots\!48}{88\!\cdots\!89}a^{2}+\frac{39\!\cdots\!95}{88\!\cdots\!89}a+\frac{11\!\cdots\!02}{22\!\cdots\!01}$, $\frac{1}{16\!\cdots\!19}a^{37}-\frac{22\!\cdots\!44}{16\!\cdots\!19}a^{36}+\frac{31\!\cdots\!71}{16\!\cdots\!19}a^{35}+\frac{82\!\cdots\!19}{16\!\cdots\!19}a^{34}+\frac{38\!\cdots\!90}{16\!\cdots\!19}a^{33}-\frac{18\!\cdots\!83}{16\!\cdots\!19}a^{32}-\frac{68\!\cdots\!15}{16\!\cdots\!19}a^{31}+\frac{44\!\cdots\!65}{16\!\cdots\!19}a^{30}-\frac{73\!\cdots\!25}{16\!\cdots\!19}a^{29}+\frac{10\!\cdots\!60}{16\!\cdots\!19}a^{28}+\frac{30\!\cdots\!36}{16\!\cdots\!19}a^{27}+\frac{29\!\cdots\!97}{16\!\cdots\!19}a^{26}-\frac{67\!\cdots\!21}{16\!\cdots\!19}a^{25}-\frac{27\!\cdots\!92}{16\!\cdots\!19}a^{24}-\frac{18\!\cdots\!07}{16\!\cdots\!19}a^{23}-\frac{24\!\cdots\!43}{16\!\cdots\!19}a^{22}+\frac{39\!\cdots\!31}{16\!\cdots\!19}a^{21}-\frac{68\!\cdots\!28}{16\!\cdots\!19}a^{20}-\frac{76\!\cdots\!51}{16\!\cdots\!19}a^{19}+\frac{11\!\cdots\!06}{16\!\cdots\!19}a^{18}+\frac{57\!\cdots\!90}{16\!\cdots\!19}a^{17}-\frac{71\!\cdots\!00}{16\!\cdots\!19}a^{16}-\frac{24\!\cdots\!71}{16\!\cdots\!19}a^{15}+\frac{47\!\cdots\!81}{16\!\cdots\!19}a^{14}+\frac{37\!\cdots\!05}{16\!\cdots\!19}a^{13}-\frac{10\!\cdots\!43}{16\!\cdots\!19}a^{12}+\frac{75\!\cdots\!69}{16\!\cdots\!19}a^{11}-\frac{32\!\cdots\!24}{16\!\cdots\!19}a^{10}-\frac{18\!\cdots\!58}{16\!\cdots\!19}a^{9}+\frac{70\!\cdots\!43}{16\!\cdots\!19}a^{8}+\frac{13\!\cdots\!25}{16\!\cdots\!19}a^{7}-\frac{45\!\cdots\!60}{16\!\cdots\!19}a^{6}-\frac{20\!\cdots\!52}{16\!\cdots\!19}a^{5}-\frac{43\!\cdots\!95}{16\!\cdots\!19}a^{4}+\frac{36\!\cdots\!32}{16\!\cdots\!19}a^{3}+\frac{32\!\cdots\!84}{16\!\cdots\!19}a^{2}-\frac{55\!\cdots\!78}{16\!\cdots\!19}a-\frac{19\!\cdots\!89}{42\!\cdots\!71}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $37$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^38 - 19*x^37 - 190*x^36 + 5263*x^35 + 10963*x^34 - 655956*x^33 + 271263*x^32 + 48829164*x^31 - 74272197*x^30 - 2427590879*x^29 + 4963339201*x^28 + 85311795747*x^27 - 192448926397*x^26 - 2186062812785*x^25 + 4980640240893*x^24 + 41507384238113*x^23 - 90602195976460*x^22 - 587394556501288*x^21 + 1185165731831058*x^20 + 6181335356273740*x^19 - 11252186392848870*x^18 - 47909517088369504*x^17 + 77654230949000120*x^16 + 268901707689505353*x^15 - 387932611852231165*x^14 - 1065553844073230755*x^13 + 1387879177866434969*x^12 + 2872799715815077105*x^11 - 3477750883069386065*x^10 - 4978197957785195915*x^9 + 5844343521008310247*x^8 + 5024712299211630779*x^7 - 6066136922383939789*x^6 - 2388621891807945980*x^5 + 3307037404639155292*x^4 + 219641714027477785*x^3 - 641666806588881139*x^2 + 40067232399563857*x + 14911143898147099)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^38 - 19*x^37 - 190*x^36 + 5263*x^35 + 10963*x^34 - 655956*x^33 + 271263*x^32 + 48829164*x^31 - 74272197*x^30 - 2427590879*x^29 + 4963339201*x^28 + 85311795747*x^27 - 192448926397*x^26 - 2186062812785*x^25 + 4980640240893*x^24 + 41507384238113*x^23 - 90602195976460*x^22 - 587394556501288*x^21 + 1185165731831058*x^20 + 6181335356273740*x^19 - 11252186392848870*x^18 - 47909517088369504*x^17 + 77654230949000120*x^16 + 268901707689505353*x^15 - 387932611852231165*x^14 - 1065553844073230755*x^13 + 1387879177866434969*x^12 + 2872799715815077105*x^11 - 3477750883069386065*x^10 - 4978197957785195915*x^9 + 5844343521008310247*x^8 + 5024712299211630779*x^7 - 6066136922383939789*x^6 - 2388621891807945980*x^5 + 3307037404639155292*x^4 + 219641714027477785*x^3 - 641666806588881139*x^2 + 40067232399563857*x + 14911143898147099, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^38 - 19*x^37 - 190*x^36 + 5263*x^35 + 10963*x^34 - 655956*x^33 + 271263*x^32 + 48829164*x^31 - 74272197*x^30 - 2427590879*x^29 + 4963339201*x^28 + 85311795747*x^27 - 192448926397*x^26 - 2186062812785*x^25 + 4980640240893*x^24 + 41507384238113*x^23 - 90602195976460*x^22 - 587394556501288*x^21 + 1185165731831058*x^20 + 6181335356273740*x^19 - 11252186392848870*x^18 - 47909517088369504*x^17 + 77654230949000120*x^16 + 268901707689505353*x^15 - 387932611852231165*x^14 - 1065553844073230755*x^13 + 1387879177866434969*x^12 + 2872799715815077105*x^11 - 3477750883069386065*x^10 - 4978197957785195915*x^9 + 5844343521008310247*x^8 + 5024712299211630779*x^7 - 6066136922383939789*x^6 - 2388621891807945980*x^5 + 3307037404639155292*x^4 + 219641714027477785*x^3 - 641666806588881139*x^2 + 40067232399563857*x + 14911143898147099);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^38 - 19*x^37 - 190*x^36 + 5263*x^35 + 10963*x^34 - 655956*x^33 + 271263*x^32 + 48829164*x^31 - 74272197*x^30 - 2427590879*x^29 + 4963339201*x^28 + 85311795747*x^27 - 192448926397*x^26 - 2186062812785*x^25 + 4980640240893*x^24 + 41507384238113*x^23 - 90602195976460*x^22 - 587394556501288*x^21 + 1185165731831058*x^20 + 6181335356273740*x^19 - 11252186392848870*x^18 - 47909517088369504*x^17 + 77654230949000120*x^16 + 268901707689505353*x^15 - 387932611852231165*x^14 - 1065553844073230755*x^13 + 1387879177866434969*x^12 + 2872799715815077105*x^11 - 3477750883069386065*x^10 - 4978197957785195915*x^9 + 5844343521008310247*x^8 + 5024712299211630779*x^7 - 6066136922383939789*x^6 - 2388621891807945980*x^5 + 3307037404639155292*x^4 + 219641714027477785*x^3 - 641666806588881139*x^2 + 40067232399563857*x + 14911143898147099);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{38}$ (as 38T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 38
The 38 conjugacy class representatives for $C_{38}$
Character table for $C_{38}$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 19.19.10842505080063916320800450434338728415281531281.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $38$ $38$ R $38$ $19^{2}$ $38$ $38$ R $38$ $19^{2}$ $19^{2}$ $38$ $19^{2}$ $38$ $38$ $38$ $19^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $38$$2$$19$$19$
\(19\) Copy content Toggle raw display 19.19.36.1$x^{19} + 342 x^{18} + 19$$19$$1$$36$$C_{19}$$[2]$
19.19.36.1$x^{19} + 342 x^{18} + 19$$19$$1$$36$$C_{19}$$[2]$