Normalized defining polynomial
\( x^{38} - 4 x - 2 \)
Invariants
| Degree: | $38$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 18]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31900937949806586390320337463114855419174100233410480755209811568901372071903232=2^{75}\cdot 3\cdot 23\cdot 277\cdot 1513583473\cdot 5473293451459721\cdot 5332978185985420820488513531\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 277, 1513583473, 5473293451459721, 5332978185985420820488513531$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $\frac{1}{5} a^{37} - \frac{2}{5} a^{36} - \frac{1}{5} a^{35} + \frac{2}{5} a^{34} + \frac{1}{5} a^{33} - \frac{2}{5} a^{32} - \frac{1}{5} a^{31} + \frac{2}{5} a^{30} + \frac{1}{5} a^{29} - \frac{2}{5} a^{28} - \frac{1}{5} a^{27} + \frac{2}{5} a^{26} + \frac{1}{5} a^{25} - \frac{2}{5} a^{24} - \frac{1}{5} a^{23} + \frac{2}{5} a^{22} + \frac{1}{5} a^{21} - \frac{2}{5} a^{20} - \frac{1}{5} a^{19} + \frac{2}{5} a^{18} + \frac{1}{5} a^{17} - \frac{2}{5} a^{16} - \frac{1}{5} a^{15} + \frac{2}{5} a^{14} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{38}$ (as 38T76):
| A non-solvable group of order 523022617466601111760007224100074291200000000 |
| The 26015 conjugacy class representatives for $S_{38}$ are not computed |
| Character table for $S_{38}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21{,}\,{\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $19^{2}$ | $35{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }{,}\,{\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.13.0.1}{13} }{,}\,{\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $36{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.11.0.1}{11} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $17{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $38$ | $35{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | $20{,}\,{\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $17{,}\,{\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $17{,}\,{\href{/LocalNumberField/53.11.0.1}{11} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $25{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 23 | Data not computed | ||||||
| 277 | Data not computed | ||||||
| 1513583473 | Data not computed | ||||||
| 5473293451459721 | Data not computed | ||||||
| 5332978185985420820488513531 | Data not computed | ||||||