\\ Pari/GP code for working with number field 38.0.3600319611560698860610362435063272860144872381060102455880973038531255093138465367428016635904.1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^38 + 181*x^36 + 14302*x^34 + 655785*x^32 + 19564842*x^30 + 403491764*x^28 + 5961216274*x^26 + 64460499272*x^24 + 516273473421*x^22 + 3076728313208*x^20 + 13620343868498*x^18 + 44444158242663*x^16 + 105381413708670*x^14 + 177560394917737*x^12 + 205585970435602*x^10 + 155336297697903*x^8 + 70268784621098*x^6 + 16089414412134*x^4 + 1207108975793*x^2 + 13841287201, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])