Properties

Label 38.0.152...747.1
Degree $38$
Signature $[0, 19]$
Discriminant $-1.522\times 10^{91}$
Root discriminant \(250.92\)
Ramified primes $3,191$
Class number not computed
Class group not computed
Galois group $C_{38}$ (as 38T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^38 - x^37 + 91*x^36 - 24*x^35 + 5113*x^34 - 166*x^33 + 173717*x^32 + 27194*x^31 + 4239797*x^30 + 1325317*x^29 + 74027272*x^28 + 40999344*x^27 + 983326589*x^26 + 743120555*x^25 + 10059741791*x^24 + 9563481092*x^23 + 81070213075*x^22 + 87547591746*x^21 + 511882174610*x^20 + 601337789804*x^19 + 2539884758984*x^18 + 3042827513863*x^17 + 9675050790560*x^16 + 11543123809355*x^15 + 28268796522511*x^14 + 31776668507252*x^13 + 60600608962241*x^12 + 63076854532617*x^11 + 95016529831875*x^10 + 85766481354393*x^9 + 98440678914956*x^8 + 74640315704381*x^7 + 67352150639088*x^6 + 40110464366364*x^5 + 23287561297245*x^4 + 7350839404496*x^3 + 1810153278801*x^2 + 182761486103*x + 13841287201)
 
gp: K = bnfinit(y^38 - y^37 + 91*y^36 - 24*y^35 + 5113*y^34 - 166*y^33 + 173717*y^32 + 27194*y^31 + 4239797*y^30 + 1325317*y^29 + 74027272*y^28 + 40999344*y^27 + 983326589*y^26 + 743120555*y^25 + 10059741791*y^24 + 9563481092*y^23 + 81070213075*y^22 + 87547591746*y^21 + 511882174610*y^20 + 601337789804*y^19 + 2539884758984*y^18 + 3042827513863*y^17 + 9675050790560*y^16 + 11543123809355*y^15 + 28268796522511*y^14 + 31776668507252*y^13 + 60600608962241*y^12 + 63076854532617*y^11 + 95016529831875*y^10 + 85766481354393*y^9 + 98440678914956*y^8 + 74640315704381*y^7 + 67352150639088*y^6 + 40110464366364*y^5 + 23287561297245*y^4 + 7350839404496*y^3 + 1810153278801*y^2 + 182761486103*y + 13841287201, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^38 - x^37 + 91*x^36 - 24*x^35 + 5113*x^34 - 166*x^33 + 173717*x^32 + 27194*x^31 + 4239797*x^30 + 1325317*x^29 + 74027272*x^28 + 40999344*x^27 + 983326589*x^26 + 743120555*x^25 + 10059741791*x^24 + 9563481092*x^23 + 81070213075*x^22 + 87547591746*x^21 + 511882174610*x^20 + 601337789804*x^19 + 2539884758984*x^18 + 3042827513863*x^17 + 9675050790560*x^16 + 11543123809355*x^15 + 28268796522511*x^14 + 31776668507252*x^13 + 60600608962241*x^12 + 63076854532617*x^11 + 95016529831875*x^10 + 85766481354393*x^9 + 98440678914956*x^8 + 74640315704381*x^7 + 67352150639088*x^6 + 40110464366364*x^5 + 23287561297245*x^4 + 7350839404496*x^3 + 1810153278801*x^2 + 182761486103*x + 13841287201);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^38 - x^37 + 91*x^36 - 24*x^35 + 5113*x^34 - 166*x^33 + 173717*x^32 + 27194*x^31 + 4239797*x^30 + 1325317*x^29 + 74027272*x^28 + 40999344*x^27 + 983326589*x^26 + 743120555*x^25 + 10059741791*x^24 + 9563481092*x^23 + 81070213075*x^22 + 87547591746*x^21 + 511882174610*x^20 + 601337789804*x^19 + 2539884758984*x^18 + 3042827513863*x^17 + 9675050790560*x^16 + 11543123809355*x^15 + 28268796522511*x^14 + 31776668507252*x^13 + 60600608962241*x^12 + 63076854532617*x^11 + 95016529831875*x^10 + 85766481354393*x^9 + 98440678914956*x^8 + 74640315704381*x^7 + 67352150639088*x^6 + 40110464366364*x^5 + 23287561297245*x^4 + 7350839404496*x^3 + 1810153278801*x^2 + 182761486103*x + 13841287201)
 

\( x^{38} - x^{37} + 91 x^{36} - 24 x^{35} + 5113 x^{34} - 166 x^{33} + 173717 x^{32} + 27194 x^{31} + \cdots + 13841287201 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $38$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 19]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-152\!\cdots\!747\) \(\medspace = -\,3^{19}\cdot 191^{36}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(250.92\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}191^{18/19}\approx 250.92250057347005$
Ramified primes:   \(3\), \(191\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Gal(K/\Q) }$:  $38$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(573=3\cdot 191\)
Dirichlet character group:    $\lbrace$$\chi_{573}(1,·)$, $\chi_{573}(260,·)$, $\chi_{573}(5,·)$, $\chi_{573}(518,·)$, $\chi_{573}(136,·)$, $\chi_{573}(535,·)$, $\chi_{573}(532,·)$, $\chi_{573}(407,·)$, $\chi_{573}(536,·)$, $\chi_{573}(388,·)$, $\chi_{573}(154,·)$, $\chi_{573}(412,·)$, $\chi_{573}(542,·)$, $\chi_{573}(32,·)$, $\chi_{573}(418,·)$, $\chi_{573}(298,·)$, $\chi_{573}(562,·)$, $\chi_{573}(559,·)$, $\chi_{573}(434,·)$, $\chi_{573}(52,·)$, $\chi_{573}(316,·)$, $\chi_{573}(160,·)$, $\chi_{573}(451,·)$, $\chi_{573}(196,·)$, $\chi_{573}(197,·)$, $\chi_{573}(341,·)$, $\chi_{573}(344,·)$, $\chi_{573}(221,·)$, $\chi_{573}(223,·)$, $\chi_{573}(227,·)$, $\chi_{573}(107,·)$, $\chi_{573}(368,·)$, $\chi_{573}(371,·)$, $\chi_{573}(25,·)$, $\chi_{573}(503,·)$, $\chi_{573}(121,·)$, $\chi_{573}(125,·)$, $\chi_{573}(383,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{262144}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7}a^{7}-\frac{1}{7}a$, $\frac{1}{7}a^{8}-\frac{1}{7}a^{2}$, $\frac{1}{7}a^{9}-\frac{1}{7}a^{3}$, $\frac{1}{7}a^{10}-\frac{1}{7}a^{4}$, $\frac{1}{7}a^{11}-\frac{1}{7}a^{5}$, $\frac{1}{7}a^{12}-\frac{1}{7}a^{6}$, $\frac{1}{7}a^{13}-\frac{1}{7}a$, $\frac{1}{49}a^{14}-\frac{2}{49}a^{8}+\frac{1}{49}a^{2}$, $\frac{1}{49}a^{15}-\frac{2}{49}a^{9}+\frac{1}{49}a^{3}$, $\frac{1}{49}a^{16}-\frac{2}{49}a^{10}+\frac{1}{49}a^{4}$, $\frac{1}{49}a^{17}-\frac{2}{49}a^{11}+\frac{1}{49}a^{5}$, $\frac{1}{49}a^{18}-\frac{2}{49}a^{12}+\frac{1}{49}a^{6}$, $\frac{1}{49}a^{19}-\frac{2}{49}a^{13}+\frac{1}{49}a^{7}$, $\frac{1}{49}a^{20}-\frac{3}{49}a^{8}+\frac{2}{49}a^{2}$, $\frac{1}{343}a^{21}-\frac{3}{343}a^{15}+\frac{3}{343}a^{9}-\frac{1}{343}a^{3}$, $\frac{1}{343}a^{22}-\frac{3}{343}a^{16}+\frac{3}{343}a^{10}-\frac{1}{343}a^{4}$, $\frac{1}{343}a^{23}-\frac{3}{343}a^{17}+\frac{3}{343}a^{11}-\frac{1}{343}a^{5}$, $\frac{1}{343}a^{24}-\frac{3}{343}a^{18}+\frac{3}{343}a^{12}-\frac{1}{343}a^{6}$, $\frac{1}{343}a^{25}-\frac{3}{343}a^{19}+\frac{3}{343}a^{13}-\frac{1}{343}a^{7}$, $\frac{1}{2401}a^{26}-\frac{2}{2401}a^{25}+\frac{1}{2401}a^{23}-\frac{2}{2401}a^{22}-\frac{17}{2401}a^{20}-\frac{15}{2401}a^{19}-\frac{17}{2401}a^{17}-\frac{15}{2401}a^{16}-\frac{18}{2401}a^{14}+\frac{134}{2401}a^{13}-\frac{2}{49}a^{12}-\frac{165}{2401}a^{11}+\frac{134}{2401}a^{10}-\frac{2}{49}a^{9}-\frac{113}{2401}a^{8}-\frac{117}{2401}a^{7}-\frac{5}{49}a^{6}-\frac{1191}{2401}a^{5}-\frac{803}{2401}a^{4}-\frac{5}{49}a^{3}+\frac{24}{49}a^{2}-\frac{2}{7}a$, $\frac{1}{2401}a^{27}+\frac{3}{2401}a^{25}+\frac{1}{2401}a^{24}+\frac{3}{2401}a^{22}-\frac{3}{2401}a^{21}-\frac{2}{2401}a^{19}-\frac{17}{2401}a^{18}-\frac{2}{2401}a^{16}-\frac{11}{2401}a^{15}+\frac{93}{2401}a^{13}-\frac{18}{2401}a^{12}+\frac{1}{49}a^{11}+\frac{93}{2401}a^{10}-\frac{22}{2401}a^{9}+\frac{1}{49}a^{8}-\frac{94}{2401}a^{7}+\frac{377}{2401}a^{6}-\frac{22}{49}a^{5}+\frac{592}{2401}a^{4}+\frac{54}{343}a^{3}-\frac{22}{49}a^{2}+\frac{2}{7}a$, $\frac{1}{2401}a^{28}+\frac{3}{2401}a^{22}-\frac{15}{2401}a^{16}+\frac{17}{2401}a^{10}-\frac{6}{2401}a^{4}$, $\frac{1}{16807}a^{29}+\frac{3}{16807}a^{28}+\frac{1}{16807}a^{27}-\frac{4}{16807}a^{25}+\frac{15}{16807}a^{24}+\frac{3}{16807}a^{23}-\frac{2}{16807}a^{22}-\frac{17}{16807}a^{21}-\frac{1}{343}a^{20}-\frac{79}{16807}a^{19}-\frac{10}{16807}a^{18}+\frac{132}{16807}a^{17}-\frac{54}{16807}a^{16}-\frac{116}{16807}a^{15}+\frac{3}{343}a^{14}-\frac{761}{16807}a^{13}+\frac{612}{16807}a^{12}-\frac{571}{16807}a^{11}+\frac{200}{16807}a^{10}+\frac{916}{16807}a^{9}+\frac{12}{343}a^{8}-\frac{871}{16807}a^{7}-\frac{7477}{16807}a^{6}+\frac{6609}{16807}a^{5}+\frac{158}{343}a^{4}-\frac{9}{343}a^{3}+\frac{23}{49}a^{2}+\frac{2}{7}a$, $\frac{1}{16807}a^{30}-\frac{1}{16807}a^{28}-\frac{3}{16807}a^{27}+\frac{3}{16807}a^{26}+\frac{13}{16807}a^{25}+\frac{1}{2401}a^{24}-\frac{4}{16807}a^{23}-\frac{4}{16807}a^{22}+\frac{2}{16807}a^{21}-\frac{51}{16807}a^{20}+\frac{122}{16807}a^{19}+\frac{15}{16807}a^{18}+\frac{117}{16807}a^{17}-\frac{164}{16807}a^{16}+\frac{152}{16807}a^{15}+\frac{44}{16807}a^{14}-\frac{969}{16807}a^{13}-\frac{545}{16807}a^{12}-\frac{614}{16807}a^{11}-\frac{1028}{16807}a^{10}+\frac{241}{16807}a^{9}+\frac{1033}{16807}a^{8}-\frac{881}{16807}a^{7}+\frac{8068}{16807}a^{6}-\frac{2929}{16807}a^{5}+\frac{955}{2401}a^{4}+\frac{97}{343}a^{3}+\frac{1}{49}a^{2}-\frac{1}{7}a$, $\frac{1}{117649}a^{31}-\frac{1}{117649}a^{30}+\frac{3}{117649}a^{29}-\frac{11}{117649}a^{28}-\frac{11}{117649}a^{27}+\frac{24}{117649}a^{26}+\frac{34}{117649}a^{25}-\frac{24}{16807}a^{24}-\frac{72}{117649}a^{23}+\frac{89}{117649}a^{22}-\frac{107}{117649}a^{21}+\frac{768}{117649}a^{20}-\frac{3}{117649}a^{19}+\frac{664}{117649}a^{18}-\frac{726}{117649}a^{17}-\frac{1174}{117649}a^{16}-\frac{194}{117649}a^{15}-\frac{1020}{117649}a^{14}+\frac{488}{117649}a^{13}-\frac{5720}{117649}a^{12}+\frac{529}{117649}a^{11}-\frac{1060}{117649}a^{10}+\frac{998}{117649}a^{9}+\frac{228}{117649}a^{8}-\frac{520}{117649}a^{7}+\frac{38839}{117649}a^{6}-\frac{4421}{16807}a^{5}+\frac{191}{2401}a^{4}+\frac{103}{343}a^{3}+\frac{13}{49}a^{2}-\frac{1}{7}a$, $\frac{1}{117649}a^{32}+\frac{2}{117649}a^{30}-\frac{1}{117649}a^{29}-\frac{1}{117649}a^{28}+\frac{20}{117649}a^{27}+\frac{9}{117649}a^{26}-\frac{64}{117649}a^{25}-\frac{135}{117649}a^{24}-\frac{11}{117649}a^{23}+\frac{66}{117649}a^{22}-\frac{144}{117649}a^{21}-\frac{1146}{117649}a^{20}+\frac{843}{117649}a^{19}-\frac{132}{117649}a^{18}-\frac{143}{117649}a^{17}-\frac{1011}{117649}a^{16}+\frac{32}{117649}a^{15}-\frac{146}{16807}a^{14}-\frac{318}{117649}a^{13}+\frac{3895}{117649}a^{12}+\frac{3557}{117649}a^{11}-\frac{5228}{117649}a^{10}-\frac{6425}{117649}a^{9}+\frac{4559}{117649}a^{8}+\frac{4341}{117649}a^{7}-\frac{32442}{117649}a^{6}-\frac{4945}{16807}a^{5}+\frac{60}{343}a^{4}-\frac{72}{343}a^{3}+\frac{9}{49}a^{2}-\frac{3}{7}a$, $\frac{1}{89766187}a^{33}+\frac{117}{89766187}a^{32}-\frac{75}{89766187}a^{31}-\frac{1762}{89766187}a^{30}-\frac{692}{89766187}a^{29}+\frac{14337}{89766187}a^{28}-\frac{1221}{89766187}a^{27}-\frac{14131}{89766187}a^{26}+\frac{14492}{12823741}a^{25}+\frac{16285}{12823741}a^{24}+\frac{113943}{89766187}a^{23}+\frac{108434}{89766187}a^{22}-\frac{123659}{89766187}a^{21}-\frac{161232}{89766187}a^{20}-\frac{875530}{89766187}a^{19}-\frac{691185}{89766187}a^{18}-\frac{97689}{89766187}a^{17}-\frac{553095}{89766187}a^{16}-\frac{574085}{89766187}a^{15}+\frac{229786}{89766187}a^{14}+\frac{944729}{89766187}a^{13}-\frac{6066877}{89766187}a^{12}-\frac{5574549}{89766187}a^{11}+\frac{2371851}{89766187}a^{10}+\frac{567753}{12823741}a^{9}-\frac{2407520}{89766187}a^{8}-\frac{2924515}{89766187}a^{7}-\frac{33501292}{89766187}a^{6}-\frac{395726}{12823741}a^{5}+\frac{824345}{1831963}a^{4}-\frac{31312}{261709}a^{3}-\frac{6900}{37387}a^{2}+\frac{507}{5341}a-\frac{54}{109}$, $\frac{1}{89766187}a^{34}-\frac{30}{89766187}a^{32}+\frac{146}{89766187}a^{31}-\frac{548}{89766187}a^{30}+\frac{2215}{89766187}a^{29}+\frac{17499}{89766187}a^{28}-\frac{17770}{89766187}a^{27}-\frac{16915}{89766187}a^{26}+\frac{8259}{12823741}a^{25}-\frac{112080}{89766187}a^{24}-\frac{18419}{89766187}a^{23}-\frac{70626}{89766187}a^{22}+\frac{47927}{89766187}a^{21}-\frac{5541}{12823741}a^{20}-\frac{654116}{89766187}a^{19}+\frac{1276}{12823741}a^{18}-\frac{106104}{89766187}a^{17}+\frac{856336}{89766187}a^{16}+\frac{644387}{89766187}a^{15}+\frac{793761}{89766187}a^{14}-\frac{4974033}{89766187}a^{13}+\frac{76597}{89766187}a^{12}+\frac{5889195}{89766187}a^{11}-\frac{1635720}{89766187}a^{10}+\frac{1876004}{89766187}a^{9}+\frac{4340086}{89766187}a^{8}-\frac{50268}{823543}a^{7}-\frac{2746056}{89766187}a^{6}-\frac{3427211}{12823741}a^{5}+\frac{734742}{1831963}a^{4}+\frac{101589}{261709}a^{3}+\frac{14277}{37387}a^{2}-\frac{925}{5341}a-\frac{4}{109}$, $\frac{1}{28\!\cdots\!29}a^{35}-\frac{13722960588}{28\!\cdots\!29}a^{34}-\frac{13395831}{58\!\cdots\!21}a^{33}-\frac{4660720226802}{28\!\cdots\!29}a^{32}+\frac{10608979324751}{28\!\cdots\!29}a^{31}-\frac{47028408171421}{28\!\cdots\!29}a^{30}+\frac{31483027476815}{28\!\cdots\!29}a^{29}-\frac{57860024469234}{28\!\cdots\!29}a^{28}+\frac{300888128345415}{28\!\cdots\!29}a^{27}-\frac{4880325001574}{58\!\cdots\!21}a^{26}-\frac{35\!\cdots\!73}{28\!\cdots\!29}a^{25}+\frac{22\!\cdots\!10}{28\!\cdots\!29}a^{24}+\frac{582194426089153}{40\!\cdots\!47}a^{23}-\frac{33\!\cdots\!10}{28\!\cdots\!29}a^{22}+\frac{556061758226451}{28\!\cdots\!29}a^{21}+\frac{10\!\cdots\!39}{28\!\cdots\!29}a^{20}+\frac{39\!\cdots\!55}{28\!\cdots\!29}a^{19}-\frac{22\!\cdots\!20}{28\!\cdots\!29}a^{18}-\frac{20\!\cdots\!56}{28\!\cdots\!29}a^{17}+\frac{10\!\cdots\!88}{28\!\cdots\!29}a^{16}-\frac{19\!\cdots\!56}{28\!\cdots\!29}a^{15}+\frac{76\!\cdots\!31}{28\!\cdots\!29}a^{14}-\frac{74\!\cdots\!01}{28\!\cdots\!29}a^{13}+\frac{17\!\cdots\!64}{28\!\cdots\!29}a^{12}+\frac{16\!\cdots\!28}{28\!\cdots\!29}a^{11}-\frac{95\!\cdots\!64}{28\!\cdots\!29}a^{10}+\frac{16\!\cdots\!31}{28\!\cdots\!29}a^{9}-\frac{18\!\cdots\!34}{28\!\cdots\!29}a^{8}-\frac{52\!\cdots\!24}{28\!\cdots\!29}a^{7}+\frac{587509322012215}{40\!\cdots\!47}a^{6}+\frac{51\!\cdots\!88}{58\!\cdots\!21}a^{5}+\frac{35\!\cdots\!01}{83\!\cdots\!03}a^{4}+\frac{23419799942713}{11\!\cdots\!29}a^{3}-\frac{77010725974068}{169765516786747}a^{2}-\frac{9954329976680}{24252216683821}a+\frac{205248013810}{494943197629}$, $\frac{1}{10\!\cdots\!41}a^{36}-\frac{27\!\cdots\!84}{10\!\cdots\!41}a^{35}+\frac{43\!\cdots\!32}{14\!\cdots\!63}a^{34}-\frac{31\!\cdots\!29}{10\!\cdots\!41}a^{33}-\frac{43\!\cdots\!04}{10\!\cdots\!41}a^{32}-\frac{15\!\cdots\!11}{10\!\cdots\!41}a^{31}+\frac{84\!\cdots\!06}{10\!\cdots\!41}a^{30}-\frac{10\!\cdots\!08}{10\!\cdots\!41}a^{29}-\frac{42\!\cdots\!05}{10\!\cdots\!41}a^{28}-\frac{10\!\cdots\!26}{14\!\cdots\!63}a^{27}-\frac{11\!\cdots\!17}{10\!\cdots\!41}a^{26}-\frac{13\!\cdots\!85}{10\!\cdots\!41}a^{25}+\frac{10\!\cdots\!39}{14\!\cdots\!63}a^{24}+\frac{12\!\cdots\!10}{10\!\cdots\!41}a^{23}+\frac{13\!\cdots\!30}{10\!\cdots\!41}a^{22}+\frac{57\!\cdots\!26}{10\!\cdots\!41}a^{21}+\frac{80\!\cdots\!74}{10\!\cdots\!41}a^{20}+\frac{10\!\cdots\!25}{10\!\cdots\!41}a^{19}+\frac{10\!\cdots\!22}{10\!\cdots\!41}a^{18}-\frac{15\!\cdots\!25}{10\!\cdots\!41}a^{17}-\frac{66\!\cdots\!43}{10\!\cdots\!41}a^{16}-\frac{36\!\cdots\!49}{10\!\cdots\!41}a^{15}+\frac{34\!\cdots\!51}{10\!\cdots\!41}a^{14}+\frac{55\!\cdots\!53}{10\!\cdots\!41}a^{13}-\frac{15\!\cdots\!91}{10\!\cdots\!41}a^{12}-\frac{71\!\cdots\!10}{10\!\cdots\!41}a^{11}-\frac{51\!\cdots\!52}{10\!\cdots\!41}a^{10}+\frac{54\!\cdots\!82}{10\!\cdots\!41}a^{9}-\frac{22\!\cdots\!72}{10\!\cdots\!41}a^{8}+\frac{74\!\cdots\!85}{14\!\cdots\!63}a^{7}+\frac{64\!\cdots\!22}{21\!\cdots\!09}a^{6}+\frac{47\!\cdots\!78}{30\!\cdots\!87}a^{5}+\frac{64\!\cdots\!09}{43\!\cdots\!41}a^{4}+\frac{20\!\cdots\!17}{61\!\cdots\!63}a^{3}+\frac{10\!\cdots\!70}{25\!\cdots\!63}a^{2}+\frac{55\!\cdots\!94}{12\!\cdots\!87}a+\frac{54\!\cdots\!69}{25\!\cdots\!63}$, $\frac{1}{30\!\cdots\!01}a^{37}+\frac{10\!\cdots\!04}{30\!\cdots\!01}a^{36}+\frac{22\!\cdots\!11}{43\!\cdots\!43}a^{35}-\frac{11\!\cdots\!41}{30\!\cdots\!01}a^{34}-\frac{12\!\cdots\!79}{30\!\cdots\!01}a^{33}-\frac{14\!\cdots\!55}{30\!\cdots\!01}a^{32}+\frac{34\!\cdots\!89}{30\!\cdots\!01}a^{31}+\frac{27\!\cdots\!92}{30\!\cdots\!01}a^{30}+\frac{47\!\cdots\!96}{30\!\cdots\!01}a^{29}-\frac{82\!\cdots\!72}{43\!\cdots\!43}a^{28}+\frac{27\!\cdots\!17}{30\!\cdots\!01}a^{27}-\frac{20\!\cdots\!00}{30\!\cdots\!01}a^{26}-\frac{54\!\cdots\!41}{43\!\cdots\!43}a^{25}+\frac{24\!\cdots\!40}{30\!\cdots\!01}a^{24}+\frac{76\!\cdots\!60}{30\!\cdots\!01}a^{23}+\frac{22\!\cdots\!90}{30\!\cdots\!01}a^{22}+\frac{32\!\cdots\!62}{30\!\cdots\!01}a^{21}-\frac{18\!\cdots\!29}{30\!\cdots\!01}a^{20}+\frac{18\!\cdots\!38}{30\!\cdots\!01}a^{19}+\frac{38\!\cdots\!13}{30\!\cdots\!01}a^{18}-\frac{22\!\cdots\!36}{30\!\cdots\!01}a^{17}+\frac{13\!\cdots\!76}{30\!\cdots\!01}a^{16}-\frac{26\!\cdots\!36}{30\!\cdots\!01}a^{15}-\frac{58\!\cdots\!71}{30\!\cdots\!01}a^{14}+\frac{77\!\cdots\!92}{30\!\cdots\!01}a^{13}-\frac{58\!\cdots\!32}{30\!\cdots\!01}a^{12}+\frac{10\!\cdots\!74}{30\!\cdots\!01}a^{11}-\frac{17\!\cdots\!29}{30\!\cdots\!01}a^{10}-\frac{12\!\cdots\!11}{30\!\cdots\!01}a^{9}+\frac{13\!\cdots\!55}{43\!\cdots\!43}a^{8}-\frac{42\!\cdots\!16}{62\!\cdots\!49}a^{7}-\frac{74\!\cdots\!05}{81\!\cdots\!23}a^{6}-\frac{47\!\cdots\!35}{12\!\cdots\!01}a^{5}+\frac{90\!\cdots\!74}{18\!\cdots\!43}a^{4}-\frac{58\!\cdots\!40}{25\!\cdots\!49}a^{3}+\frac{96\!\cdots\!36}{37\!\cdots\!07}a^{2}-\frac{18\!\cdots\!05}{75\!\cdots\!43}a+\frac{41\!\cdots\!25}{15\!\cdots\!07}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $7$

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $18$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{4816252170315163138117851302261472656312674300013663836892486465989579986185475594712658494600501569654350537598801945091168658119}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{37} + \frac{5322726934380524893507794006270716809335601686347935155502693999574734824891508410899939111857665950269546714043375237115588293953}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{36} - \frac{62699942078416586227456131556328821444612307045940474841454923130814403655199239979582031090553059628994332347953378104448228635600}{83757877717200665823588768258884108516069938406400008166704773414845491540297010507299068356256451283016271438742194601760510504088259226069} a^{35} + \frac{161810822297524181622244179389560041884974294813201144439592946232036056377188745592350621504857814930439481200555680878723601799807}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{34} - \frac{24648104360251243649571866306262349559364502139989739299749020622901118282349373460402517614155196058657598485939586595811497950882279}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{33} + \frac{3393469072260192012227163856798827458065317167181502196009082504853183371106704178776202306822149252603730078447686620253645985674620}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{32} - \frac{837337159972834517409998212545347779319415773814819495854493488558366667621485183746983940732548258208666075721626609986161259703718419}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{31} - \frac{42881083074839588382148043877569979505745219856359788127578987490511314252218759670987125608899623894791040786338969084826473293887781}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{30} - \frac{20426220454507742514281548342578706918226457857762096136565120014670759957126122841732185203759689245841512376997652355178362575701863913}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{29} - \frac{605113323629505739423050330371045799545316931463014943764958132881508815531173582765034717533977693484076516429760615258073761410278541}{83757877717200665823588768258884108516069938406400008166704773414845491540297010507299068356256451283016271438742194601760510504088259226069} a^{28} - \frac{356353975508648648653018110275245937535449379596165698608645849619831101358123626112434155374083569175835049593988385131335471413962010428}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{27} - \frac{160049162708613813105546888375621411946182664802341591003260804211181644555177055841358933810007425776318033529137752066224655324929217312}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{26} - \frac{674828161901453630664970064357378382435987295081754204888334741295276882683036095968017278816214197853866289835757344247480500498630778466}{83757877717200665823588768258884108516069938406400008166704773414845491540297010507299068356256451283016271438742194601760510504088259226069} a^{25} - \frac{3084479648192895625537243717703731586707048574393750142339792328873410019083279731841138471879754376070024957729714462730467878321472393809}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{24} - \frac{48188632676554974733388031346103905843971270072755195741933769785989624491585660702218625349153506767425997447872859727279166178425189027715}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{23} - \frac{41034663886899958848618149982160284988841847256497448439174619782315873725828201627158361494297584153690506333932293360352887596177237384031}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{22} - \frac{386788604520632762885559604114299737526043346116537560171853774595349340858931094957132605027155557670605869844596774401705756385738565185504}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{21} - \frac{381539754942230958208249674963275597691820354222836865843610463879796470970047718147508448276875190510877412045722609257777034881734076299464}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{20} - \frac{2430527595750453517842471163667942180358856600649144416430133364566092790929553682801470279783910461199281554402294858509652219643385293909655}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{19} - \frac{2645921216988351373616159265619382240576611069101197772384446731203831212766702806583995858296586858131754314000624476784249531577071886825617}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{18} - \frac{11988456980390686780596927166393750251294965721267237719285429597408936785117972946469673512447349764503627563195075103563778651355889226811198}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{17} - \frac{13431919259598909144192443421468359178308486500666190637490650590619533668543536142873166141876842197998943064299206425467483923579758839882372}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{16} - \frac{45356749873547266105218594988002779801138338422966310197110038725718689769958859191784930022416777122505240161670894859652888563757230527192116}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{15} - \frac{51021107358094205687977605697227186707156520942090890438054837737852601172751156755910170410834963216787774987088290810560818817701868146497548}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{14} - \frac{131455693959226034773872729049835164094003639165367031140349743027788904599926489378072824636755259505243376149774652393641318573775015410820632}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{13} - \frac{139989938874582848256063980520816376903731445279317771421483300807601377302140069194305296036469607896693179404120923899090746841396748195594895}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{12} - \frac{279168014469598699481761519458683396456467392845648092174175139990587384670676847317306555192090121600441917380224108779012886901176265842233475}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{11} - \frac{276642036853305343783171609511449739831586555685510770275742654519359387284221350262451148101162915771442261269622098089903305598275130990224033}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{10} - \frac{433058219993507668231164979948760971594327033523264519105135622685414186625657980684748164617001819606064922025157950656797766749957137809029255}{586305144020404660765121377812188759612489568844800057166933413903918440782079073551093478493795158981113900071195362212323573528617814582483} a^{9} - \frac{53159053139607724247715022550899839192639978637908365535973223962229297245865396567781155630093898966900800457146651894986723219688071083366698}{83757877717200665823588768258884108516069938406400008166704773414845491540297010507299068356256451283016271438742194601760510504088259226069} a^{8} - \frac{9028772860596264994217584592312218823059504020379664836846030969253134056753962836551358074259431085822793513687680564782205144524856150155281}{11965411102457237974798395465554872645152848343771429738100681916406498791471001501042724050893778754716610205534599228822930072012608460867} a^{7} - \frac{8546357135105725499824157633704846995921311482238421734848381144357878458896931904002098358046128270523185596655582248806569984795677294647}{15682059112001622509565393794960514607015528628796107127261706312459369320407603540029782504447940700808139194671820745508427355193458009} a^{6} - \frac{124561947418983864851106122337044286057495131787218535089069173638586650755805197831110893572945122191646198567952787301330091307129233393843}{244192063315453836220375417664385156023527517219825096695932284008295893703489826551892327569260790912583881745604065894345511673726703283} a^{5} - \frac{9982556606653137019831078956978523405134387784520640552374997499733070614896677705147478519620938928861980085071856913664307954037816347488}{34884580473636262317196488237769308003361073888546442385133183429756556243355689507413189652751541558940554535086295127763644524818100469} a^{4} - \frac{853369750001272626668738746509746344739200133143330905094032592604568944929462354641301800963747856286015992994896256997269987408460300873}{4983511496233751759599498319681329714765867698363777483590454775679508034765098501059027093250220222705793505012327875394806360688300067} a^{3} - \frac{33772555497226671779131143537965752008003084787420153947975886377433743707268186917161392588338940583260471077352760384817741708510218371}{711930213747678822799928331383047102109409671194825354798636396525644004966442643008432441892888603243684786430332553627829480098328581} a^{2} - \frac{199117059709795191421615459452698422692815704720546612869550275744663217948475373500198233935107218711359345520400968830657419359528131}{14529188035666914751018945538429532696110401452955619485686457071951918468702911081804743712099767413136424212863929665874071022414869} a - \frac{115242852397386778884348276934071391588388119795602314623487518800913183838389282603316061088609731946913687484389672824969796806040}{296514041544222750020794806906725157063477580672563662973193001468406499361283899628668239022444232921151514548243462568858592294181} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^38 - x^37 + 91*x^36 - 24*x^35 + 5113*x^34 - 166*x^33 + 173717*x^32 + 27194*x^31 + 4239797*x^30 + 1325317*x^29 + 74027272*x^28 + 40999344*x^27 + 983326589*x^26 + 743120555*x^25 + 10059741791*x^24 + 9563481092*x^23 + 81070213075*x^22 + 87547591746*x^21 + 511882174610*x^20 + 601337789804*x^19 + 2539884758984*x^18 + 3042827513863*x^17 + 9675050790560*x^16 + 11543123809355*x^15 + 28268796522511*x^14 + 31776668507252*x^13 + 60600608962241*x^12 + 63076854532617*x^11 + 95016529831875*x^10 + 85766481354393*x^9 + 98440678914956*x^8 + 74640315704381*x^7 + 67352150639088*x^6 + 40110464366364*x^5 + 23287561297245*x^4 + 7350839404496*x^3 + 1810153278801*x^2 + 182761486103*x + 13841287201)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^38 - x^37 + 91*x^36 - 24*x^35 + 5113*x^34 - 166*x^33 + 173717*x^32 + 27194*x^31 + 4239797*x^30 + 1325317*x^29 + 74027272*x^28 + 40999344*x^27 + 983326589*x^26 + 743120555*x^25 + 10059741791*x^24 + 9563481092*x^23 + 81070213075*x^22 + 87547591746*x^21 + 511882174610*x^20 + 601337789804*x^19 + 2539884758984*x^18 + 3042827513863*x^17 + 9675050790560*x^16 + 11543123809355*x^15 + 28268796522511*x^14 + 31776668507252*x^13 + 60600608962241*x^12 + 63076854532617*x^11 + 95016529831875*x^10 + 85766481354393*x^9 + 98440678914956*x^8 + 74640315704381*x^7 + 67352150639088*x^6 + 40110464366364*x^5 + 23287561297245*x^4 + 7350839404496*x^3 + 1810153278801*x^2 + 182761486103*x + 13841287201, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^38 - x^37 + 91*x^36 - 24*x^35 + 5113*x^34 - 166*x^33 + 173717*x^32 + 27194*x^31 + 4239797*x^30 + 1325317*x^29 + 74027272*x^28 + 40999344*x^27 + 983326589*x^26 + 743120555*x^25 + 10059741791*x^24 + 9563481092*x^23 + 81070213075*x^22 + 87547591746*x^21 + 511882174610*x^20 + 601337789804*x^19 + 2539884758984*x^18 + 3042827513863*x^17 + 9675050790560*x^16 + 11543123809355*x^15 + 28268796522511*x^14 + 31776668507252*x^13 + 60600608962241*x^12 + 63076854532617*x^11 + 95016529831875*x^10 + 85766481354393*x^9 + 98440678914956*x^8 + 74640315704381*x^7 + 67352150639088*x^6 + 40110464366364*x^5 + 23287561297245*x^4 + 7350839404496*x^3 + 1810153278801*x^2 + 182761486103*x + 13841287201);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^38 - x^37 + 91*x^36 - 24*x^35 + 5113*x^34 - 166*x^33 + 173717*x^32 + 27194*x^31 + 4239797*x^30 + 1325317*x^29 + 74027272*x^28 + 40999344*x^27 + 983326589*x^26 + 743120555*x^25 + 10059741791*x^24 + 9563481092*x^23 + 81070213075*x^22 + 87547591746*x^21 + 511882174610*x^20 + 601337789804*x^19 + 2539884758984*x^18 + 3042827513863*x^17 + 9675050790560*x^16 + 11543123809355*x^15 + 28268796522511*x^14 + 31776668507252*x^13 + 60600608962241*x^12 + 63076854532617*x^11 + 95016529831875*x^10 + 85766481354393*x^9 + 98440678914956*x^8 + 74640315704381*x^7 + 67352150639088*x^6 + 40110464366364*x^5 + 23287561297245*x^4 + 7350839404496*x^3 + 1810153278801*x^2 + 182761486103*x + 13841287201);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{38}$ (as 38T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 38
The 38 conjugacy class representatives for $C_{38}$
Character table for $C_{38}$

Intermediate fields

\(\Q(\sqrt{-3}) \), 19.19.114445997944945591651333831028437092270721.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $38$ R $38$ ${\href{/padicField/7.1.0.1}{1} }^{38}$ $38$ $19^{2}$ $38$ $19^{2}$ $38$ $38$ $19^{2}$ $19^{2}$ $38$ $19^{2}$ $38$ $38$ $38$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $38$$2$$19$$19$
\(191\) Copy content Toggle raw display Deg $38$$19$$2$$36$