# SageMath code for working with number field 38.0.136635360908492439649635218195335734184282612187547808802428015665989693822130747061222659537193769787.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^38 + 171*x^36 - 266*x^35 + 17765*x^34 - 38323*x^33 + 1208419*x^32 - 3128616*x^31 + 60877083*x^30 - 164538138*x^29 + 2281935169*x^28 - 6108816122*x^27 + 65770773122*x^26 - 164067939585*x^25 + 1434043198618*x^24 - 3182597959136*x^23 + 23807715304970*x^22 - 44488778447299*x^21 + 291967423046375*x^20 - 424722852053838*x^19 + 2667130160996125*x^18 - 2974990157993691*x^17 + 18341053997864450*x^16 - 14685757775285777*x^15 + 92760878311304464*x^14 - 59049250104163667*x^13 + 342353164732402796*x^12 - 172475502215832115*x^11 + 890393108976853995*x^10 - 452012764582067042*x^9 + 1563583757111096932*x^8 - 707974172043966504*x^7 + 1816769368682524829*x^6 - 831929210861393479*x^5 + 1134167336866808190*x^4 - 228910989279510535*x^3 + 271437005032832706*x^2 - 30519054068376079*x + 49228485006254761) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^38 + 171*x^36 - 266*x^35 + 17765*x^34 - 38323*x^33 + 1208419*x^32 - 3128616*x^31 + 60877083*x^30 - 164538138*x^29 + 2281935169*x^28 - 6108816122*x^27 + 65770773122*x^26 - 164067939585*x^25 + 1434043198618*x^24 - 3182597959136*x^23 + 23807715304970*x^22 - 44488778447299*x^21 + 291967423046375*x^20 - 424722852053838*x^19 + 2667130160996125*x^18 - 2974990157993691*x^17 + 18341053997864450*x^16 - 14685757775285777*x^15 + 92760878311304464*x^14 - 59049250104163667*x^13 + 342353164732402796*x^12 - 172475502215832115*x^11 + 890393108976853995*x^10 - 452012764582067042*x^9 + 1563583757111096932*x^8 - 707974172043966504*x^7 + 1816769368682524829*x^6 - 831929210861393479*x^5 + 1134167336866808190*x^4 - 228910989279510535*x^3 + 271437005032832706*x^2 - 30519054068376079*x + 49228485006254761) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]