# SageMath code for working with number field 37.37.81381208133441979421709122744091225498491936628940230588748580298513087650630871328595025812353503688138712627681.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^37 - 666*x^35 - 481*x^34 + 193399*x^33 + 256521*x^32 - 32436827*x^31 - 60004084*x^30 + 3503452596*x^29 + 8113398850*x^28 - 257000630926*x^27 - 704292185114*x^26 + 13150853376643*x^25 + 41268101524916*x^24 - 474337598223255*x^23 - 1672482254287228*x^22 + 12032466243732809*x^21 + 47286637172470867*x^20 - 211502629431882231*x^19 - 929675982328753625*x^18 + 2498958523266151636*x^17 + 12536142236443615902*x^16 - 18791897342800992970*x^15 - 113239929214497210129*x^14 + 80927529107744817385*x^13 + 663966210336111429023*x^12 - 146546651897009713442*x^11 - 2439258160361411529393*x^10 - 154326326264692800324*x^9 + 5386184266991634344483*x^8 + 1055793633392402952768*x^7 - 6769150214799915444440*x^6 - 1552196159553019851407*x^5 + 4355671676506075568364*x^4 + 921754431147330625307*x^3 - 1108584774969076393499*x^2 - 217498966742521653325*x + 51140551819476687829) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^37 - 666*x^35 - 481*x^34 + 193399*x^33 + 256521*x^32 - 32436827*x^31 - 60004084*x^30 + 3503452596*x^29 + 8113398850*x^28 - 257000630926*x^27 - 704292185114*x^26 + 13150853376643*x^25 + 41268101524916*x^24 - 474337598223255*x^23 - 1672482254287228*x^22 + 12032466243732809*x^21 + 47286637172470867*x^20 - 211502629431882231*x^19 - 929675982328753625*x^18 + 2498958523266151636*x^17 + 12536142236443615902*x^16 - 18791897342800992970*x^15 - 113239929214497210129*x^14 + 80927529107744817385*x^13 + 663966210336111429023*x^12 - 146546651897009713442*x^11 - 2439258160361411529393*x^10 - 154326326264692800324*x^9 + 5386184266991634344483*x^8 + 1055793633392402952768*x^7 - 6769150214799915444440*x^6 - 1552196159553019851407*x^5 + 4355671676506075568364*x^4 + 921754431147330625307*x^3 - 1108584774969076393499*x^2 - 217498966742521653325*x + 51140551819476687829) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]