sage: x = polygen(QQ); K.<a> = NumberField(x^37 - 666*x^35 - 481*x^34 + 193399*x^33 + 256521*x^32 - 32436827*x^31 - 60004084*x^30 + 3503452596*x^29 + 8113398850*x^28 - 257000630926*x^27 - 704292185114*x^26 + 13150853376643*x^25 + 41268101524916*x^24 - 474337598223255*x^23 - 1672482254287228*x^22 + 12032466243732809*x^21 + 47286637172470867*x^20 - 211502629431882231*x^19 - 929675982328753625*x^18 + 2498958523266151636*x^17 + 12536142236443615902*x^16 - 18791897342800992970*x^15 - 113239929214497210129*x^14 + 80927529107744817385*x^13 + 663966210336111429023*x^12 - 146546651897009713442*x^11 - 2439258160361411529393*x^10 - 154326326264692800324*x^9 + 5386184266991634344483*x^8 + 1055793633392402952768*x^7 - 6769150214799915444440*x^6 - 1552196159553019851407*x^5 + 4355671676506075568364*x^4 + 921754431147330625307*x^3 - 1108584774969076393499*x^2 - 217498966742521653325*x + 51140551819476687829)
gp: K = bnfinit(y^37 - 666*y^35 - 481*y^34 + 193399*y^33 + 256521*y^32 - 32436827*y^31 - 60004084*y^30 + 3503452596*y^29 + 8113398850*y^28 - 257000630926*y^27 - 704292185114*y^26 + 13150853376643*y^25 + 41268101524916*y^24 - 474337598223255*y^23 - 1672482254287228*y^22 + 12032466243732809*y^21 + 47286637172470867*y^20 - 211502629431882231*y^19 - 929675982328753625*y^18 + 2498958523266151636*y^17 + 12536142236443615902*y^16 - 18791897342800992970*y^15 - 113239929214497210129*y^14 + 80927529107744817385*y^13 + 663966210336111429023*y^12 - 146546651897009713442*y^11 - 2439258160361411529393*y^10 - 154326326264692800324*y^9 + 5386184266991634344483*y^8 + 1055793633392402952768*y^7 - 6769150214799915444440*y^6 - 1552196159553019851407*y^5 + 4355671676506075568364*y^4 + 921754431147330625307*y^3 - 1108584774969076393499*y^2 - 217498966742521653325*y + 51140551819476687829, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^37 - 666*x^35 - 481*x^34 + 193399*x^33 + 256521*x^32 - 32436827*x^31 - 60004084*x^30 + 3503452596*x^29 + 8113398850*x^28 - 257000630926*x^27 - 704292185114*x^26 + 13150853376643*x^25 + 41268101524916*x^24 - 474337598223255*x^23 - 1672482254287228*x^22 + 12032466243732809*x^21 + 47286637172470867*x^20 - 211502629431882231*x^19 - 929675982328753625*x^18 + 2498958523266151636*x^17 + 12536142236443615902*x^16 - 18791897342800992970*x^15 - 113239929214497210129*x^14 + 80927529107744817385*x^13 + 663966210336111429023*x^12 - 146546651897009713442*x^11 - 2439258160361411529393*x^10 - 154326326264692800324*x^9 + 5386184266991634344483*x^8 + 1055793633392402952768*x^7 - 6769150214799915444440*x^6 - 1552196159553019851407*x^5 + 4355671676506075568364*x^4 + 921754431147330625307*x^3 - 1108584774969076393499*x^2 - 217498966742521653325*x + 51140551819476687829);
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^37 - 666*x^35 - 481*x^34 + 193399*x^33 + 256521*x^32 - 32436827*x^31 - 60004084*x^30 + 3503452596*x^29 + 8113398850*x^28 - 257000630926*x^27 - 704292185114*x^26 + 13150853376643*x^25 + 41268101524916*x^24 - 474337598223255*x^23 - 1672482254287228*x^22 + 12032466243732809*x^21 + 47286637172470867*x^20 - 211502629431882231*x^19 - 929675982328753625*x^18 + 2498958523266151636*x^17 + 12536142236443615902*x^16 - 18791897342800992970*x^15 - 113239929214497210129*x^14 + 80927529107744817385*x^13 + 663966210336111429023*x^12 - 146546651897009713442*x^11 - 2439258160361411529393*x^10 - 154326326264692800324*x^9 + 5386184266991634344483*x^8 + 1055793633392402952768*x^7 - 6769150214799915444440*x^6 - 1552196159553019851407*x^5 + 4355671676506075568364*x^4 + 921754431147330625307*x^3 - 1108584774969076393499*x^2 - 217498966742521653325*x + 51140551819476687829)
\( x^{37} - 666 x^{35} - 481 x^{34} + 193399 x^{33} + 256521 x^{32} - 32436827 x^{31} + \cdots + 51\!\cdots\!29 \)
sage: K.defining_polynomial()
magma: DefiningPolynomial(K);
oscar: defining_polynomial(K)
Degree: | | $37$ |
|
Signature: | | $[37, 0]$ |
|
Discriminant: | |
\(813\!\cdots\!681\)
\(\medspace = 37^{72}\)
|
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
|
Root discriminant: | | \(1126.25\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
|
Galois root discriminant: | | $37^{72/37}\approx 1126.2525502057642$
|
Ramified primes: | |
\(37\)
|
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
|
Discriminant root field: | | \(\Q\)
|
$\card{ \Gal(K/\Q) }$: | | $37$ |
|
This field is Galois and abelian over $\Q$. |
Conductor: | | \(1369=37^{2}\) |
Dirichlet character group:
| |
$\lbrace$$\chi_{1369}(1,·)$, $\chi_{1369}(260,·)$, $\chi_{1369}(519,·)$, $\chi_{1369}(778,·)$, $\chi_{1369}(1037,·)$, $\chi_{1369}(1296,·)$, $\chi_{1369}(149,·)$, $\chi_{1369}(408,·)$, $\chi_{1369}(667,·)$, $\chi_{1369}(926,·)$, $\chi_{1369}(1185,·)$, $\chi_{1369}(38,·)$, $\chi_{1369}(297,·)$, $\chi_{1369}(556,·)$, $\chi_{1369}(815,·)$, $\chi_{1369}(1074,·)$, $\chi_{1369}(1333,·)$, $\chi_{1369}(186,·)$, $\chi_{1369}(445,·)$, $\chi_{1369}(704,·)$, $\chi_{1369}(963,·)$, $\chi_{1369}(1222,·)$, $\chi_{1369}(75,·)$, $\chi_{1369}(334,·)$, $\chi_{1369}(593,·)$, $\chi_{1369}(852,·)$, $\chi_{1369}(1111,·)$, $\chi_{1369}(223,·)$, $\chi_{1369}(482,·)$, $\chi_{1369}(741,·)$, $\chi_{1369}(1000,·)$, $\chi_{1369}(1259,·)$, $\chi_{1369}(112,·)$, $\chi_{1369}(371,·)$, $\chi_{1369}(630,·)$, $\chi_{1369}(889,·)$, $\chi_{1369}(1148,·)$$\rbrace$
|
This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{35\!\cdots\!71}a^{36}+\frac{15\!\cdots\!51}{35\!\cdots\!71}a^{35}+\frac{11\!\cdots\!81}{35\!\cdots\!71}a^{34}-\frac{11\!\cdots\!47}{35\!\cdots\!71}a^{33}-\frac{41\!\cdots\!88}{35\!\cdots\!71}a^{32}-\frac{30\!\cdots\!82}{35\!\cdots\!71}a^{31}+\frac{77\!\cdots\!48}{35\!\cdots\!71}a^{30}+\frac{12\!\cdots\!26}{35\!\cdots\!71}a^{29}-\frac{53\!\cdots\!33}{35\!\cdots\!71}a^{28}-\frac{70\!\cdots\!56}{35\!\cdots\!71}a^{27}+\frac{17\!\cdots\!37}{35\!\cdots\!71}a^{26}-\frac{15\!\cdots\!23}{35\!\cdots\!71}a^{25}-\frac{10\!\cdots\!22}{35\!\cdots\!71}a^{24}+\frac{13\!\cdots\!87}{35\!\cdots\!71}a^{23}-\frac{16\!\cdots\!42}{35\!\cdots\!71}a^{22}+\frac{10\!\cdots\!94}{35\!\cdots\!71}a^{21}-\frac{13\!\cdots\!22}{35\!\cdots\!71}a^{20}-\frac{11\!\cdots\!35}{35\!\cdots\!71}a^{19}+\frac{65\!\cdots\!92}{35\!\cdots\!71}a^{18}+\frac{35\!\cdots\!78}{35\!\cdots\!71}a^{17}-\frac{70\!\cdots\!19}{35\!\cdots\!71}a^{16}+\frac{17\!\cdots\!67}{35\!\cdots\!71}a^{15}-\frac{11\!\cdots\!91}{35\!\cdots\!71}a^{14}+\frac{67\!\cdots\!89}{35\!\cdots\!71}a^{13}+\frac{27\!\cdots\!92}{35\!\cdots\!71}a^{12}-\frac{15\!\cdots\!56}{35\!\cdots\!71}a^{11}+\frac{13\!\cdots\!77}{35\!\cdots\!71}a^{10}+\frac{11\!\cdots\!34}{35\!\cdots\!71}a^{9}+\frac{17\!\cdots\!39}{35\!\cdots\!71}a^{8}+\frac{11\!\cdots\!35}{35\!\cdots\!71}a^{7}-\frac{16\!\cdots\!49}{35\!\cdots\!71}a^{6}-\frac{17\!\cdots\!31}{35\!\cdots\!71}a^{5}+\frac{16\!\cdots\!36}{35\!\cdots\!71}a^{4}+\frac{13\!\cdots\!11}{35\!\cdots\!71}a^{3}+\frac{14\!\cdots\!47}{35\!\cdots\!71}a^{2}+\frac{13\!\cdots\!18}{35\!\cdots\!71}a-\frac{10\!\cdots\!11}{35\!\cdots\!71}$
not computed
sage: K.class_group().invariants()
sage: UK = K.unit_group()
magma: UK, fUK := UnitGroup(K);
oscar: UK, fUK = unit_group(OK)
Rank: | | $36$
|
|
Torsion generator: | |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
|
Fundamental units: | | not computed
| sage: UK.fundamental_units()
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
|
Regulator: | | not computed
|
|
\[
\begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{37}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{81381208133441979421709122744091225498491936628940230588748580298513087650630871328595025812353503688138712627681}}\cr\mathstrut & \text{
some values not computed }
\end{aligned}\]
# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^37 - 666*x^35 - 481*x^34 + 193399*x^33 + 256521*x^32 - 32436827*x^31 - 60004084*x^30 + 3503452596*x^29 + 8113398850*x^28 - 257000630926*x^27 - 704292185114*x^26 + 13150853376643*x^25 + 41268101524916*x^24 - 474337598223255*x^23 - 1672482254287228*x^22 + 12032466243732809*x^21 + 47286637172470867*x^20 - 211502629431882231*x^19 - 929675982328753625*x^18 + 2498958523266151636*x^17 + 12536142236443615902*x^16 - 18791897342800992970*x^15 - 113239929214497210129*x^14 + 80927529107744817385*x^13 + 663966210336111429023*x^12 - 146546651897009713442*x^11 - 2439258160361411529393*x^10 - 154326326264692800324*x^9 + 5386184266991634344483*x^8 + 1055793633392402952768*x^7 - 6769150214799915444440*x^6 - 1552196159553019851407*x^5 + 4355671676506075568364*x^4 + 921754431147330625307*x^3 - 1108584774969076393499*x^2 - 217498966742521653325*x + 51140551819476687829) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
# self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^37 - 666*x^35 - 481*x^34 + 193399*x^33 + 256521*x^32 - 32436827*x^31 - 60004084*x^30 + 3503452596*x^29 + 8113398850*x^28 - 257000630926*x^27 - 704292185114*x^26 + 13150853376643*x^25 + 41268101524916*x^24 - 474337598223255*x^23 - 1672482254287228*x^22 + 12032466243732809*x^21 + 47286637172470867*x^20 - 211502629431882231*x^19 - 929675982328753625*x^18 + 2498958523266151636*x^17 + 12536142236443615902*x^16 - 18791897342800992970*x^15 - 113239929214497210129*x^14 + 80927529107744817385*x^13 + 663966210336111429023*x^12 - 146546651897009713442*x^11 - 2439258160361411529393*x^10 - 154326326264692800324*x^9 + 5386184266991634344483*x^8 + 1055793633392402952768*x^7 - 6769150214799915444440*x^6 - 1552196159553019851407*x^5 + 4355671676506075568364*x^4 + 921754431147330625307*x^3 - 1108584774969076393499*x^2 - 217498966742521653325*x + 51140551819476687829, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^37 - 666*x^35 - 481*x^34 + 193399*x^33 + 256521*x^32 - 32436827*x^31 - 60004084*x^30 + 3503452596*x^29 + 8113398850*x^28 - 257000630926*x^27 - 704292185114*x^26 + 13150853376643*x^25 + 41268101524916*x^24 - 474337598223255*x^23 - 1672482254287228*x^22 + 12032466243732809*x^21 + 47286637172470867*x^20 - 211502629431882231*x^19 - 929675982328753625*x^18 + 2498958523266151636*x^17 + 12536142236443615902*x^16 - 18791897342800992970*x^15 - 113239929214497210129*x^14 + 80927529107744817385*x^13 + 663966210336111429023*x^12 - 146546651897009713442*x^11 - 2439258160361411529393*x^10 - 154326326264692800324*x^9 + 5386184266991634344483*x^8 + 1055793633392402952768*x^7 - 6769150214799915444440*x^6 - 1552196159553019851407*x^5 + 4355671676506075568364*x^4 + 921754431147330625307*x^3 - 1108584774969076393499*x^2 - 217498966742521653325*x + 51140551819476687829); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^37 - 666*x^35 - 481*x^34 + 193399*x^33 + 256521*x^32 - 32436827*x^31 - 60004084*x^30 + 3503452596*x^29 + 8113398850*x^28 - 257000630926*x^27 - 704292185114*x^26 + 13150853376643*x^25 + 41268101524916*x^24 - 474337598223255*x^23 - 1672482254287228*x^22 + 12032466243732809*x^21 + 47286637172470867*x^20 - 211502629431882231*x^19 - 929675982328753625*x^18 + 2498958523266151636*x^17 + 12536142236443615902*x^16 - 18791897342800992970*x^15 - 113239929214497210129*x^14 + 80927529107744817385*x^13 + 663966210336111429023*x^12 - 146546651897009713442*x^11 - 2439258160361411529393*x^10 - 154326326264692800324*x^9 + 5386184266991634344483*x^8 + 1055793633392402952768*x^7 - 6769150214799915444440*x^6 - 1552196159553019851407*x^5 + 4355671676506075568364*x^4 + 921754431147330625307*x^3 - 1108584774969076393499*x^2 - 217498966742521653325*x + 51140551819476687829); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
$C_{37}$ (as 37T1):
sage: K.galois_group(type='pari')
magma: G = GaloisGroup(K);
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
The extension is primitive: there are no intermediate fields
between this field and $\Q$.
|
sage: K.subfields()[1:-1]
gp: L = nfsubfields(K); L[2..length(b)]
magma: L := Subfields(K); L[2..#L];
oscar: subfields(K)[2:end-1]
$p$ |
$2$ |
$3$ |
$5$ |
$7$ |
$11$ |
$13$ |
$17$ |
$19$ |
$23$ |
$29$ |
$31$ |
$37$ |
$41$ |
$43$ |
$47$ |
$53$ |
$59$ |
Cycle type |
$37$ |
$37$ |
$37$ |
$37$ |
$37$ |
$37$ |
$37$ |
$37$ |
$37$ |
$37$ |
$37$ |
R |
$37$ |
$37$ |
$37$ |
$37$ |
$37$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
|