Properties

Label 37.37.676...801.1
Degree $37$
Signature $[37, 0]$
Discriminant $6.760\times 10^{99}$
Root discriminant \(499.01\)
Ramified prime $593$
Class number not computed
Class group not computed
Galois group $C_{37}$ (as 37T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^37 - x^36 - 288*x^35 + 203*x^34 + 35910*x^33 - 17336*x^32 - 2554843*x^31 + 842615*x^30 + 115283443*x^29 - 27504461*x^28 - 3475263507*x^27 + 687931612*x^26 + 71915662407*x^25 - 13974595438*x^24 - 1034496050617*x^23 + 221330910643*x^22 + 10365088714029*x^21 - 2534502436630*x^20 - 71813314605418*x^19 + 19740632343658*x^18 + 338381715805464*x^17 - 99305962871851*x^16 - 1055972317034939*x^15 + 302779333586209*x^14 + 2104618406390649*x^13 - 505910437546894*x^12 - 2560928454934750*x^11 + 376597618487442*x^10 + 1787314591059035*x^9 - 20429122626927*x^8 - 643936928000107*x^7 - 89391122404607*x^6 + 89662863870162*x^5 + 25891375086732*x^4 + 1113091773432*x^3 - 112807611860*x^2 - 8478121776*x - 123515969)
 
gp: K = bnfinit(y^37 - y^36 - 288*y^35 + 203*y^34 + 35910*y^33 - 17336*y^32 - 2554843*y^31 + 842615*y^30 + 115283443*y^29 - 27504461*y^28 - 3475263507*y^27 + 687931612*y^26 + 71915662407*y^25 - 13974595438*y^24 - 1034496050617*y^23 + 221330910643*y^22 + 10365088714029*y^21 - 2534502436630*y^20 - 71813314605418*y^19 + 19740632343658*y^18 + 338381715805464*y^17 - 99305962871851*y^16 - 1055972317034939*y^15 + 302779333586209*y^14 + 2104618406390649*y^13 - 505910437546894*y^12 - 2560928454934750*y^11 + 376597618487442*y^10 + 1787314591059035*y^9 - 20429122626927*y^8 - 643936928000107*y^7 - 89391122404607*y^6 + 89662863870162*y^5 + 25891375086732*y^4 + 1113091773432*y^3 - 112807611860*y^2 - 8478121776*y - 123515969, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^37 - x^36 - 288*x^35 + 203*x^34 + 35910*x^33 - 17336*x^32 - 2554843*x^31 + 842615*x^30 + 115283443*x^29 - 27504461*x^28 - 3475263507*x^27 + 687931612*x^26 + 71915662407*x^25 - 13974595438*x^24 - 1034496050617*x^23 + 221330910643*x^22 + 10365088714029*x^21 - 2534502436630*x^20 - 71813314605418*x^19 + 19740632343658*x^18 + 338381715805464*x^17 - 99305962871851*x^16 - 1055972317034939*x^15 + 302779333586209*x^14 + 2104618406390649*x^13 - 505910437546894*x^12 - 2560928454934750*x^11 + 376597618487442*x^10 + 1787314591059035*x^9 - 20429122626927*x^8 - 643936928000107*x^7 - 89391122404607*x^6 + 89662863870162*x^5 + 25891375086732*x^4 + 1113091773432*x^3 - 112807611860*x^2 - 8478121776*x - 123515969);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^37 - x^36 - 288*x^35 + 203*x^34 + 35910*x^33 - 17336*x^32 - 2554843*x^31 + 842615*x^30 + 115283443*x^29 - 27504461*x^28 - 3475263507*x^27 + 687931612*x^26 + 71915662407*x^25 - 13974595438*x^24 - 1034496050617*x^23 + 221330910643*x^22 + 10365088714029*x^21 - 2534502436630*x^20 - 71813314605418*x^19 + 19740632343658*x^18 + 338381715805464*x^17 - 99305962871851*x^16 - 1055972317034939*x^15 + 302779333586209*x^14 + 2104618406390649*x^13 - 505910437546894*x^12 - 2560928454934750*x^11 + 376597618487442*x^10 + 1787314591059035*x^9 - 20429122626927*x^8 - 643936928000107*x^7 - 89391122404607*x^6 + 89662863870162*x^5 + 25891375086732*x^4 + 1113091773432*x^3 - 112807611860*x^2 - 8478121776*x - 123515969)
 

\( x^{37} - x^{36} - 288 x^{35} + 203 x^{34} + 35910 x^{33} - 17336 x^{32} - 2554843 x^{31} + \cdots - 123515969 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $37$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[37, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(676\!\cdots\!801\) \(\medspace = 593^{36}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(499.01\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $593^{36/37}\approx 499.007725403986$
Ramified primes:   \(593\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $37$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(593\)
Dirichlet character group:    $\lbrace$$\chi_{593}(256,·)$, $\chi_{593}(1,·)$, $\chi_{593}(258,·)$, $\chi_{593}(399,·)$, $\chi_{593}(16,·)$, $\chi_{593}(529,·)$, $\chi_{593}(148,·)$, $\chi_{593}(277,·)$, $\chi_{593}(535,·)$, $\chi_{593}(152,·)$, $\chi_{593}(281,·)$, $\chi_{593}(154,·)$, $\chi_{593}(538,·)$, $\chi_{593}(286,·)$, $\chi_{593}(162,·)$, $\chi_{593}(220,·)$, $\chi_{593}(42,·)$, $\chi_{593}(555,·)$, $\chi_{593}(556,·)$, $\chi_{593}(306,·)$, $\chi_{593}(183,·)$, $\chi_{593}(570,·)$, $\chi_{593}(60,·)$, $\chi_{593}(62,·)$, $\chi_{593}(578,·)$, $\chi_{593}(454,·)$, $\chi_{593}(225,·)$, $\chi_{593}(311,·)$, $\chi_{593}(589,·)$, $\chi_{593}(78,·)$, $\chi_{593}(79,·)$, $\chi_{593}(345,·)$, $\chi_{593}(92,·)$, $\chi_{593}(353,·)$, $\chi_{593}(232,·)$, $\chi_{593}(367,·)$, $\chi_{593}(425,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $\frac{1}{59}a^{29}+\frac{14}{59}a^{28}+\frac{17}{59}a^{27}+\frac{6}{59}a^{26}+\frac{28}{59}a^{25}-\frac{1}{59}a^{24}+\frac{19}{59}a^{23}-\frac{10}{59}a^{22}-\frac{4}{59}a^{21}-\frac{8}{59}a^{20}-\frac{8}{59}a^{19}-\frac{3}{59}a^{18}-\frac{21}{59}a^{17}+\frac{29}{59}a^{16}-\frac{28}{59}a^{15}+\frac{11}{59}a^{14}-\frac{13}{59}a^{13}-\frac{6}{59}a^{12}-\frac{12}{59}a^{11}+\frac{16}{59}a^{10}+\frac{27}{59}a^{9}+\frac{14}{59}a^{8}-\frac{11}{59}a^{7}-\frac{13}{59}a^{6}-\frac{2}{59}a^{5}-\frac{13}{59}a^{4}+\frac{14}{59}a^{3}-\frac{17}{59}a^{2}+\frac{12}{59}a$, $\frac{1}{59}a^{30}-\frac{2}{59}a^{28}+\frac{4}{59}a^{27}+\frac{3}{59}a^{26}+\frac{20}{59}a^{25}-\frac{26}{59}a^{24}+\frac{19}{59}a^{23}+\frac{18}{59}a^{22}-\frac{11}{59}a^{21}-\frac{14}{59}a^{20}-\frac{9}{59}a^{19}+\frac{21}{59}a^{18}+\frac{28}{59}a^{17}-\frac{21}{59}a^{16}-\frac{10}{59}a^{15}+\frac{10}{59}a^{14}-\frac{1}{59}a^{13}+\frac{13}{59}a^{12}+\frac{7}{59}a^{11}-\frac{20}{59}a^{10}-\frac{10}{59}a^{9}+\frac{29}{59}a^{8}+\frac{23}{59}a^{7}+\frac{3}{59}a^{6}+\frac{15}{59}a^{5}+\frac{19}{59}a^{4}+\frac{23}{59}a^{3}+\frac{14}{59}a^{2}+\frac{9}{59}a$, $\frac{1}{59}a^{31}-\frac{27}{59}a^{28}-\frac{22}{59}a^{27}-\frac{27}{59}a^{26}-\frac{29}{59}a^{25}+\frac{17}{59}a^{24}-\frac{3}{59}a^{23}+\frac{28}{59}a^{22}-\frac{22}{59}a^{21}-\frac{25}{59}a^{20}+\frac{5}{59}a^{19}+\frac{22}{59}a^{18}-\frac{4}{59}a^{17}-\frac{11}{59}a^{16}+\frac{13}{59}a^{15}+\frac{21}{59}a^{14}-\frac{13}{59}a^{13}-\frac{5}{59}a^{12}+\frac{15}{59}a^{11}+\frac{22}{59}a^{10}+\frac{24}{59}a^{9}-\frac{8}{59}a^{8}-\frac{19}{59}a^{7}-\frac{11}{59}a^{6}+\frac{15}{59}a^{5}-\frac{3}{59}a^{4}-\frac{17}{59}a^{3}-\frac{25}{59}a^{2}+\frac{24}{59}a$, $\frac{1}{59}a^{32}+\frac{2}{59}a^{28}+\frac{19}{59}a^{27}+\frac{15}{59}a^{26}+\frac{6}{59}a^{25}+\frac{29}{59}a^{24}+\frac{10}{59}a^{23}+\frac{3}{59}a^{22}-\frac{15}{59}a^{21}+\frac{25}{59}a^{20}-\frac{17}{59}a^{19}-\frac{26}{59}a^{18}+\frac{12}{59}a^{17}+\frac{29}{59}a^{16}-\frac{27}{59}a^{15}-\frac{11}{59}a^{14}-\frac{2}{59}a^{13}-\frac{29}{59}a^{12}-\frac{7}{59}a^{11}-\frac{16}{59}a^{10}+\frac{13}{59}a^{9}+\frac{5}{59}a^{8}-\frac{13}{59}a^{7}+\frac{18}{59}a^{6}+\frac{2}{59}a^{5}-\frac{14}{59}a^{4}-\frac{1}{59}a^{3}-\frac{22}{59}a^{2}+\frac{29}{59}a$, $\frac{1}{59}a^{33}-\frac{9}{59}a^{28}-\frac{19}{59}a^{27}-\frac{6}{59}a^{26}-\frac{27}{59}a^{25}+\frac{12}{59}a^{24}+\frac{24}{59}a^{23}+\frac{5}{59}a^{22}-\frac{26}{59}a^{21}-\frac{1}{59}a^{20}-\frac{10}{59}a^{19}+\frac{18}{59}a^{18}+\frac{12}{59}a^{17}-\frac{26}{59}a^{16}-\frac{14}{59}a^{15}-\frac{24}{59}a^{14}-\frac{3}{59}a^{13}+\frac{5}{59}a^{12}+\frac{8}{59}a^{11}-\frac{19}{59}a^{10}+\frac{10}{59}a^{9}+\frac{18}{59}a^{8}-\frac{19}{59}a^{7}+\frac{28}{59}a^{6}-\frac{10}{59}a^{5}+\frac{25}{59}a^{4}+\frac{9}{59}a^{3}+\frac{4}{59}a^{2}-\frac{24}{59}a$, $\frac{1}{59}a^{34}-\frac{11}{59}a^{28}+\frac{29}{59}a^{27}+\frac{27}{59}a^{26}+\frac{28}{59}a^{25}+\frac{15}{59}a^{24}-\frac{1}{59}a^{23}+\frac{2}{59}a^{22}+\frac{22}{59}a^{21}-\frac{23}{59}a^{20}+\frac{5}{59}a^{19}-\frac{15}{59}a^{18}+\frac{21}{59}a^{17}+\frac{11}{59}a^{16}+\frac{19}{59}a^{15}-\frac{22}{59}a^{14}+\frac{6}{59}a^{13}+\frac{13}{59}a^{12}-\frac{9}{59}a^{11}-\frac{23}{59}a^{10}+\frac{25}{59}a^{9}-\frac{11}{59}a^{8}-\frac{12}{59}a^{7}-\frac{9}{59}a^{6}+\frac{7}{59}a^{5}+\frac{10}{59}a^{4}+\frac{12}{59}a^{3}-\frac{10}{59}a$, $\frac{1}{59}a^{35}+\frac{6}{59}a^{28}-\frac{22}{59}a^{27}-\frac{24}{59}a^{26}+\frac{28}{59}a^{25}-\frac{12}{59}a^{24}-\frac{25}{59}a^{23}-\frac{29}{59}a^{22}-\frac{8}{59}a^{21}-\frac{24}{59}a^{20}+\frac{15}{59}a^{19}-\frac{12}{59}a^{18}+\frac{16}{59}a^{17}-\frac{16}{59}a^{16}+\frac{24}{59}a^{15}+\frac{9}{59}a^{14}-\frac{12}{59}a^{13}-\frac{16}{59}a^{12}+\frac{22}{59}a^{11}+\frac{24}{59}a^{10}-\frac{9}{59}a^{9}+\frac{24}{59}a^{8}-\frac{12}{59}a^{7}-\frac{18}{59}a^{6}-\frac{12}{59}a^{5}-\frac{13}{59}a^{4}-\frac{23}{59}a^{3}-\frac{20}{59}a^{2}+\frac{14}{59}a$, $\frac{1}{12\!\cdots\!03}a^{36}+\frac{49\!\cdots\!95}{12\!\cdots\!03}a^{35}+\frac{24\!\cdots\!38}{12\!\cdots\!03}a^{34}-\frac{90\!\cdots\!33}{12\!\cdots\!03}a^{33}+\frac{53\!\cdots\!76}{12\!\cdots\!03}a^{32}+\frac{36\!\cdots\!38}{12\!\cdots\!03}a^{31}-\frac{60\!\cdots\!07}{12\!\cdots\!03}a^{30}-\frac{59\!\cdots\!98}{12\!\cdots\!03}a^{29}-\frac{51\!\cdots\!27}{12\!\cdots\!03}a^{28}+\frac{17\!\cdots\!50}{12\!\cdots\!03}a^{27}-\frac{44\!\cdots\!20}{12\!\cdots\!03}a^{26}-\frac{26\!\cdots\!42}{12\!\cdots\!03}a^{25}+\frac{60\!\cdots\!00}{12\!\cdots\!03}a^{24}-\frac{17\!\cdots\!93}{12\!\cdots\!03}a^{23}+\frac{31\!\cdots\!52}{12\!\cdots\!03}a^{22}+\frac{47\!\cdots\!17}{12\!\cdots\!03}a^{21}-\frac{39\!\cdots\!00}{12\!\cdots\!03}a^{20}+\frac{69\!\cdots\!35}{20\!\cdots\!17}a^{19}+\frac{10\!\cdots\!30}{12\!\cdots\!03}a^{18}+\frac{19\!\cdots\!81}{12\!\cdots\!03}a^{17}-\frac{42\!\cdots\!13}{12\!\cdots\!03}a^{16}-\frac{20\!\cdots\!67}{12\!\cdots\!03}a^{15}+\frac{13\!\cdots\!59}{12\!\cdots\!03}a^{14}-\frac{78\!\cdots\!26}{12\!\cdots\!03}a^{13}-\frac{38\!\cdots\!94}{12\!\cdots\!03}a^{12}+\frac{47\!\cdots\!62}{12\!\cdots\!03}a^{11}-\frac{42\!\cdots\!25}{12\!\cdots\!03}a^{10}-\frac{39\!\cdots\!27}{12\!\cdots\!03}a^{9}+\frac{46\!\cdots\!85}{12\!\cdots\!03}a^{8}+\frac{31\!\cdots\!14}{12\!\cdots\!03}a^{7}+\frac{46\!\cdots\!62}{12\!\cdots\!03}a^{6}+\frac{31\!\cdots\!04}{12\!\cdots\!03}a^{5}+\frac{35\!\cdots\!41}{12\!\cdots\!03}a^{4}+\frac{54\!\cdots\!19}{12\!\cdots\!03}a^{3}+\frac{60\!\cdots\!89}{12\!\cdots\!03}a^{2}-\frac{58\!\cdots\!72}{12\!\cdots\!03}a-\frac{81\!\cdots\!64}{20\!\cdots\!17}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $36$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{37}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{6760346576864373546418554592723962033312970679630764740849754684931757688487032687926115035176212801}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^37 - x^36 - 288*x^35 + 203*x^34 + 35910*x^33 - 17336*x^32 - 2554843*x^31 + 842615*x^30 + 115283443*x^29 - 27504461*x^28 - 3475263507*x^27 + 687931612*x^26 + 71915662407*x^25 - 13974595438*x^24 - 1034496050617*x^23 + 221330910643*x^22 + 10365088714029*x^21 - 2534502436630*x^20 - 71813314605418*x^19 + 19740632343658*x^18 + 338381715805464*x^17 - 99305962871851*x^16 - 1055972317034939*x^15 + 302779333586209*x^14 + 2104618406390649*x^13 - 505910437546894*x^12 - 2560928454934750*x^11 + 376597618487442*x^10 + 1787314591059035*x^9 - 20429122626927*x^8 - 643936928000107*x^7 - 89391122404607*x^6 + 89662863870162*x^5 + 25891375086732*x^4 + 1113091773432*x^3 - 112807611860*x^2 - 8478121776*x - 123515969)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^37 - x^36 - 288*x^35 + 203*x^34 + 35910*x^33 - 17336*x^32 - 2554843*x^31 + 842615*x^30 + 115283443*x^29 - 27504461*x^28 - 3475263507*x^27 + 687931612*x^26 + 71915662407*x^25 - 13974595438*x^24 - 1034496050617*x^23 + 221330910643*x^22 + 10365088714029*x^21 - 2534502436630*x^20 - 71813314605418*x^19 + 19740632343658*x^18 + 338381715805464*x^17 - 99305962871851*x^16 - 1055972317034939*x^15 + 302779333586209*x^14 + 2104618406390649*x^13 - 505910437546894*x^12 - 2560928454934750*x^11 + 376597618487442*x^10 + 1787314591059035*x^9 - 20429122626927*x^8 - 643936928000107*x^7 - 89391122404607*x^6 + 89662863870162*x^5 + 25891375086732*x^4 + 1113091773432*x^3 - 112807611860*x^2 - 8478121776*x - 123515969, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^37 - x^36 - 288*x^35 + 203*x^34 + 35910*x^33 - 17336*x^32 - 2554843*x^31 + 842615*x^30 + 115283443*x^29 - 27504461*x^28 - 3475263507*x^27 + 687931612*x^26 + 71915662407*x^25 - 13974595438*x^24 - 1034496050617*x^23 + 221330910643*x^22 + 10365088714029*x^21 - 2534502436630*x^20 - 71813314605418*x^19 + 19740632343658*x^18 + 338381715805464*x^17 - 99305962871851*x^16 - 1055972317034939*x^15 + 302779333586209*x^14 + 2104618406390649*x^13 - 505910437546894*x^12 - 2560928454934750*x^11 + 376597618487442*x^10 + 1787314591059035*x^9 - 20429122626927*x^8 - 643936928000107*x^7 - 89391122404607*x^6 + 89662863870162*x^5 + 25891375086732*x^4 + 1113091773432*x^3 - 112807611860*x^2 - 8478121776*x - 123515969);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^37 - x^36 - 288*x^35 + 203*x^34 + 35910*x^33 - 17336*x^32 - 2554843*x^31 + 842615*x^30 + 115283443*x^29 - 27504461*x^28 - 3475263507*x^27 + 687931612*x^26 + 71915662407*x^25 - 13974595438*x^24 - 1034496050617*x^23 + 221330910643*x^22 + 10365088714029*x^21 - 2534502436630*x^20 - 71813314605418*x^19 + 19740632343658*x^18 + 338381715805464*x^17 - 99305962871851*x^16 - 1055972317034939*x^15 + 302779333586209*x^14 + 2104618406390649*x^13 - 505910437546894*x^12 - 2560928454934750*x^11 + 376597618487442*x^10 + 1787314591059035*x^9 - 20429122626927*x^8 - 643936928000107*x^7 - 89391122404607*x^6 + 89662863870162*x^5 + 25891375086732*x^4 + 1113091773432*x^3 - 112807611860*x^2 - 8478121776*x - 123515969);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{37}$ (as 37T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 37
The 37 conjugacy class representatives for $C_{37}$
Character table for $C_{37}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $37$ $37$ $37$ $37$ $37$ $37$ $37$ $37$ $37$ $37$ $37$ $37$ $37$ $37$ $37$ $37$ ${\href{/padicField/59.1.0.1}{1} }^{37}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(593\) Copy content Toggle raw display Deg $37$$37$$1$$36$