Normalized defining polynomial
\( x^{37} - x^{36} - 288 x^{35} + 203 x^{34} + 35910 x^{33} - 17336 x^{32} - 2554843 x^{31} + \cdots - 123515969 \)
Invariants
Degree: | $37$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[37, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(676\!\cdots\!801\) \(\medspace = 593^{36}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(499.01\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $593^{36/37}\approx 499.007725403986$ | ||
Ramified primes: | \(593\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $37$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(593\) | ||
Dirichlet character group: | $\lbrace$$\chi_{593}(256,·)$, $\chi_{593}(1,·)$, $\chi_{593}(258,·)$, $\chi_{593}(399,·)$, $\chi_{593}(16,·)$, $\chi_{593}(529,·)$, $\chi_{593}(148,·)$, $\chi_{593}(277,·)$, $\chi_{593}(535,·)$, $\chi_{593}(152,·)$, $\chi_{593}(281,·)$, $\chi_{593}(154,·)$, $\chi_{593}(538,·)$, $\chi_{593}(286,·)$, $\chi_{593}(162,·)$, $\chi_{593}(220,·)$, $\chi_{593}(42,·)$, $\chi_{593}(555,·)$, $\chi_{593}(556,·)$, $\chi_{593}(306,·)$, $\chi_{593}(183,·)$, $\chi_{593}(570,·)$, $\chi_{593}(60,·)$, $\chi_{593}(62,·)$, $\chi_{593}(578,·)$, $\chi_{593}(454,·)$, $\chi_{593}(225,·)$, $\chi_{593}(311,·)$, $\chi_{593}(589,·)$, $\chi_{593}(78,·)$, $\chi_{593}(79,·)$, $\chi_{593}(345,·)$, $\chi_{593}(92,·)$, $\chi_{593}(353,·)$, $\chi_{593}(232,·)$, $\chi_{593}(367,·)$, $\chi_{593}(425,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $\frac{1}{59}a^{29}+\frac{14}{59}a^{28}+\frac{17}{59}a^{27}+\frac{6}{59}a^{26}+\frac{28}{59}a^{25}-\frac{1}{59}a^{24}+\frac{19}{59}a^{23}-\frac{10}{59}a^{22}-\frac{4}{59}a^{21}-\frac{8}{59}a^{20}-\frac{8}{59}a^{19}-\frac{3}{59}a^{18}-\frac{21}{59}a^{17}+\frac{29}{59}a^{16}-\frac{28}{59}a^{15}+\frac{11}{59}a^{14}-\frac{13}{59}a^{13}-\frac{6}{59}a^{12}-\frac{12}{59}a^{11}+\frac{16}{59}a^{10}+\frac{27}{59}a^{9}+\frac{14}{59}a^{8}-\frac{11}{59}a^{7}-\frac{13}{59}a^{6}-\frac{2}{59}a^{5}-\frac{13}{59}a^{4}+\frac{14}{59}a^{3}-\frac{17}{59}a^{2}+\frac{12}{59}a$, $\frac{1}{59}a^{30}-\frac{2}{59}a^{28}+\frac{4}{59}a^{27}+\frac{3}{59}a^{26}+\frac{20}{59}a^{25}-\frac{26}{59}a^{24}+\frac{19}{59}a^{23}+\frac{18}{59}a^{22}-\frac{11}{59}a^{21}-\frac{14}{59}a^{20}-\frac{9}{59}a^{19}+\frac{21}{59}a^{18}+\frac{28}{59}a^{17}-\frac{21}{59}a^{16}-\frac{10}{59}a^{15}+\frac{10}{59}a^{14}-\frac{1}{59}a^{13}+\frac{13}{59}a^{12}+\frac{7}{59}a^{11}-\frac{20}{59}a^{10}-\frac{10}{59}a^{9}+\frac{29}{59}a^{8}+\frac{23}{59}a^{7}+\frac{3}{59}a^{6}+\frac{15}{59}a^{5}+\frac{19}{59}a^{4}+\frac{23}{59}a^{3}+\frac{14}{59}a^{2}+\frac{9}{59}a$, $\frac{1}{59}a^{31}-\frac{27}{59}a^{28}-\frac{22}{59}a^{27}-\frac{27}{59}a^{26}-\frac{29}{59}a^{25}+\frac{17}{59}a^{24}-\frac{3}{59}a^{23}+\frac{28}{59}a^{22}-\frac{22}{59}a^{21}-\frac{25}{59}a^{20}+\frac{5}{59}a^{19}+\frac{22}{59}a^{18}-\frac{4}{59}a^{17}-\frac{11}{59}a^{16}+\frac{13}{59}a^{15}+\frac{21}{59}a^{14}-\frac{13}{59}a^{13}-\frac{5}{59}a^{12}+\frac{15}{59}a^{11}+\frac{22}{59}a^{10}+\frac{24}{59}a^{9}-\frac{8}{59}a^{8}-\frac{19}{59}a^{7}-\frac{11}{59}a^{6}+\frac{15}{59}a^{5}-\frac{3}{59}a^{4}-\frac{17}{59}a^{3}-\frac{25}{59}a^{2}+\frac{24}{59}a$, $\frac{1}{59}a^{32}+\frac{2}{59}a^{28}+\frac{19}{59}a^{27}+\frac{15}{59}a^{26}+\frac{6}{59}a^{25}+\frac{29}{59}a^{24}+\frac{10}{59}a^{23}+\frac{3}{59}a^{22}-\frac{15}{59}a^{21}+\frac{25}{59}a^{20}-\frac{17}{59}a^{19}-\frac{26}{59}a^{18}+\frac{12}{59}a^{17}+\frac{29}{59}a^{16}-\frac{27}{59}a^{15}-\frac{11}{59}a^{14}-\frac{2}{59}a^{13}-\frac{29}{59}a^{12}-\frac{7}{59}a^{11}-\frac{16}{59}a^{10}+\frac{13}{59}a^{9}+\frac{5}{59}a^{8}-\frac{13}{59}a^{7}+\frac{18}{59}a^{6}+\frac{2}{59}a^{5}-\frac{14}{59}a^{4}-\frac{1}{59}a^{3}-\frac{22}{59}a^{2}+\frac{29}{59}a$, $\frac{1}{59}a^{33}-\frac{9}{59}a^{28}-\frac{19}{59}a^{27}-\frac{6}{59}a^{26}-\frac{27}{59}a^{25}+\frac{12}{59}a^{24}+\frac{24}{59}a^{23}+\frac{5}{59}a^{22}-\frac{26}{59}a^{21}-\frac{1}{59}a^{20}-\frac{10}{59}a^{19}+\frac{18}{59}a^{18}+\frac{12}{59}a^{17}-\frac{26}{59}a^{16}-\frac{14}{59}a^{15}-\frac{24}{59}a^{14}-\frac{3}{59}a^{13}+\frac{5}{59}a^{12}+\frac{8}{59}a^{11}-\frac{19}{59}a^{10}+\frac{10}{59}a^{9}+\frac{18}{59}a^{8}-\frac{19}{59}a^{7}+\frac{28}{59}a^{6}-\frac{10}{59}a^{5}+\frac{25}{59}a^{4}+\frac{9}{59}a^{3}+\frac{4}{59}a^{2}-\frac{24}{59}a$, $\frac{1}{59}a^{34}-\frac{11}{59}a^{28}+\frac{29}{59}a^{27}+\frac{27}{59}a^{26}+\frac{28}{59}a^{25}+\frac{15}{59}a^{24}-\frac{1}{59}a^{23}+\frac{2}{59}a^{22}+\frac{22}{59}a^{21}-\frac{23}{59}a^{20}+\frac{5}{59}a^{19}-\frac{15}{59}a^{18}+\frac{21}{59}a^{17}+\frac{11}{59}a^{16}+\frac{19}{59}a^{15}-\frac{22}{59}a^{14}+\frac{6}{59}a^{13}+\frac{13}{59}a^{12}-\frac{9}{59}a^{11}-\frac{23}{59}a^{10}+\frac{25}{59}a^{9}-\frac{11}{59}a^{8}-\frac{12}{59}a^{7}-\frac{9}{59}a^{6}+\frac{7}{59}a^{5}+\frac{10}{59}a^{4}+\frac{12}{59}a^{3}-\frac{10}{59}a$, $\frac{1}{59}a^{35}+\frac{6}{59}a^{28}-\frac{22}{59}a^{27}-\frac{24}{59}a^{26}+\frac{28}{59}a^{25}-\frac{12}{59}a^{24}-\frac{25}{59}a^{23}-\frac{29}{59}a^{22}-\frac{8}{59}a^{21}-\frac{24}{59}a^{20}+\frac{15}{59}a^{19}-\frac{12}{59}a^{18}+\frac{16}{59}a^{17}-\frac{16}{59}a^{16}+\frac{24}{59}a^{15}+\frac{9}{59}a^{14}-\frac{12}{59}a^{13}-\frac{16}{59}a^{12}+\frac{22}{59}a^{11}+\frac{24}{59}a^{10}-\frac{9}{59}a^{9}+\frac{24}{59}a^{8}-\frac{12}{59}a^{7}-\frac{18}{59}a^{6}-\frac{12}{59}a^{5}-\frac{13}{59}a^{4}-\frac{23}{59}a^{3}-\frac{20}{59}a^{2}+\frac{14}{59}a$, $\frac{1}{12\!\cdots\!03}a^{36}+\frac{49\!\cdots\!95}{12\!\cdots\!03}a^{35}+\frac{24\!\cdots\!38}{12\!\cdots\!03}a^{34}-\frac{90\!\cdots\!33}{12\!\cdots\!03}a^{33}+\frac{53\!\cdots\!76}{12\!\cdots\!03}a^{32}+\frac{36\!\cdots\!38}{12\!\cdots\!03}a^{31}-\frac{60\!\cdots\!07}{12\!\cdots\!03}a^{30}-\frac{59\!\cdots\!98}{12\!\cdots\!03}a^{29}-\frac{51\!\cdots\!27}{12\!\cdots\!03}a^{28}+\frac{17\!\cdots\!50}{12\!\cdots\!03}a^{27}-\frac{44\!\cdots\!20}{12\!\cdots\!03}a^{26}-\frac{26\!\cdots\!42}{12\!\cdots\!03}a^{25}+\frac{60\!\cdots\!00}{12\!\cdots\!03}a^{24}-\frac{17\!\cdots\!93}{12\!\cdots\!03}a^{23}+\frac{31\!\cdots\!52}{12\!\cdots\!03}a^{22}+\frac{47\!\cdots\!17}{12\!\cdots\!03}a^{21}-\frac{39\!\cdots\!00}{12\!\cdots\!03}a^{20}+\frac{69\!\cdots\!35}{20\!\cdots\!17}a^{19}+\frac{10\!\cdots\!30}{12\!\cdots\!03}a^{18}+\frac{19\!\cdots\!81}{12\!\cdots\!03}a^{17}-\frac{42\!\cdots\!13}{12\!\cdots\!03}a^{16}-\frac{20\!\cdots\!67}{12\!\cdots\!03}a^{15}+\frac{13\!\cdots\!59}{12\!\cdots\!03}a^{14}-\frac{78\!\cdots\!26}{12\!\cdots\!03}a^{13}-\frac{38\!\cdots\!94}{12\!\cdots\!03}a^{12}+\frac{47\!\cdots\!62}{12\!\cdots\!03}a^{11}-\frac{42\!\cdots\!25}{12\!\cdots\!03}a^{10}-\frac{39\!\cdots\!27}{12\!\cdots\!03}a^{9}+\frac{46\!\cdots\!85}{12\!\cdots\!03}a^{8}+\frac{31\!\cdots\!14}{12\!\cdots\!03}a^{7}+\frac{46\!\cdots\!62}{12\!\cdots\!03}a^{6}+\frac{31\!\cdots\!04}{12\!\cdots\!03}a^{5}+\frac{35\!\cdots\!41}{12\!\cdots\!03}a^{4}+\frac{54\!\cdots\!19}{12\!\cdots\!03}a^{3}+\frac{60\!\cdots\!89}{12\!\cdots\!03}a^{2}-\frac{58\!\cdots\!72}{12\!\cdots\!03}a-\frac{81\!\cdots\!64}{20\!\cdots\!17}$
Monogenic: | No | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $36$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{37}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{6760346576864373546418554592723962033312970679630764740849754684931757688487032687926115035176212801}}\cr\mathstrut & \text{
Galois group
A cyclic group of order 37 |
The 37 conjugacy class representatives for $C_{37}$ |
Character table for $C_{37}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | ${\href{/padicField/59.1.0.1}{1} }^{37}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(593\) | Deg $37$ | $37$ | $1$ | $36$ |